1 Differential Equations

1.1 Linear ODE's

A differential equation is said to be linear if F can be written as a linear combination of the derivatives of y:

$$b(x) = \sum_{i=0}^{n} a_i(x) \cdot y^{(i)}$$

where $a_i(x)$ and b(x) are continuous functions. Why is this called linear?

$$D = \frac{d^{(k)}}{dx^k} + a_{k-1}\frac{d^{(k-1)}}{dx^{k-1}} + \dots + a_0$$
$$D(\alpha f + \beta g) = \alpha D(f) + \beta D(g)$$
$$Df_1 = b_1, Df_2 = b_2 \Rightarrow D(f_1 + f_2) = b_1 + b_2$$

1.2 Solution Space

Let $I \subset \mathbf{R}$ be an open interval and $k \geq 1$ an integer, and let

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = 0$$

be a linear ODE over ${\cal I}$ with continuous coefficients.

- (1) The set S of k-times differentiable solutions $f: I \rightarrow \mathbb{C}$ of the equation is a complex vector space wich is a subspace of the space of complex valued funcitons on I. (Analogous for real numbers, if all a_i are real valued)
- (2) The dimension of S is k and for any choice of $x_0 \in I$ and any $(y_0, \ldots, y_{k-1}) \in \mathbb{C}^k$ there exists a unique f such that

$$f(x_0) = y_0, f'(x_0) = y_1, \dots, f^{(k-1)}(x_0) = y_{k-1}$$

(Analogous for real numbers, if all a_i are real)

- (3) For an arbitrary b the solution set is $S_b = \{f + f_p \mid f \in S_0\}$ where f_p is a "particular" solution.
- (4) For any initial condition there is a unique solution.

1.3 Solving linear ODE's of order 1

y' + ay = b. Here a, b are constant functions.

(1) Find solutions of the corresponding homogenous equation y' + ay = 0. Note that if f is a solution so is $z \cdot f \quad \forall z \in \mathbb{C}$. Example:

$$egin{aligned} y'+ay&=0\ y'&=-ay\ rac{y'}{y}&=-a\ ln(y)&=-\int a+C&=-A+C\ y&=e^{-A+C}&z\in\mathbb{C} \end{aligned}$$

(2) Find a particular solution $f_p: I \to \mathbb{C}$ such that $f'_p + af_p = b$. Use educated guess or variation of constants.

Assume we have $y' + \frac{y}{x} = 2\cos(x^2)$ The homogenous equation $y' = -\frac{1}{x}y$ has a constant solution $y_h(x) = 0$. Otherwise we have:

$$\log(y) = \int \frac{y'}{y} dx = -\int \frac{1}{x} dx = -\log(x) + c$$
$$y = \frac{e^c}{x}$$
$$y = \frac{C}{x}$$

Our educated guess is $y_p = \frac{C(x)}{r}$

$$\frac{C'(x)x - C(x)}{x^2} + \frac{1}{x}\frac{C(x)}{x} = 2\cos(x^2)$$

We solve for C'(x)

$$C'(x) = \frac{g(x)}{y_1(x)} \to C(x) = \int \frac{g(x)}{y_1(x)} dx = \int \frac{2\cos(x^2)}{\frac{1}{x}}$$
$$= \int 2x\cos(x^2) = \sin(x^2)y(x) = \frac{c + \sin(x^2)}{x}$$

1.4 Educated Guess

b(x)	Guess
$ax^2 + bx$	$cx^2 + dx + e$
$a \cdot e^{lpha x}$	$b \cdot e^{lpha x}$
$a\sin/\cos(\beta x)$	$c\sin(\beta x) + d\cos(\beta x)$
$ae^{\alpha x}\sin/\cos(\beta x)$	$e^{\alpha x} \left(c \sin(\beta x) + d \cos(\beta x) \right)$
$P_n(x)e^{\alpha x}$	$R_n(x) \cdot e^{lpha x}$
$P_n(x)e^{\alpha x}\sin(\beta x)$	$e^{\alpha x} \Big(R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \Big)$
$P_n(x)e^{\alpha x}\cos(\beta x)$	$e^{\alpha x} \left(R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$

1.4.1 Variation of constants

- (1) Assume $f_p = z(x)e^{-A(x)}$ for some function $z: I \to \mathbb{C}$
- (2) We plug this into the equation and see what it forces z to satisfy

$$f_p = z(x)e^{-A(x)} = y$$

$$y' = z'(x)e^{-A(x)} - z(x)A'(x)e^{-A(x)}$$

$$y' = e^{-A(x)} \left(z'(x) - z(x)a(x) \right)$$

$$ay = a \cdot z(x)e^{-A(x)}$$
$$y' + ay = z'(x)e^{-A(x)} = b(x)$$
$$b(x) = z'(x)e^{A(x)}$$
$$z(x) = \int \frac{e^{A(x)}}{b(x)}$$
$$y_p = z(x)e^{-A(x)}$$

1.4.2 Solving Linear ODE's with constant coefficients

We want to solve

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_0y = b(x)$$

We assume our solution is $e^{\lambda x}$.

$$P(\lambda) = \lambda^k e^{\lambda x} + a_{k-1} \lambda^{k-1} e^{\lambda x} + \dots + a_0 e^{\lambda x} = 0$$
$$= e^{\lambda x} \left(\lambda^k + a_{k-1} \lambda^{k-1} + \dots + a_0 \right) = 0$$
$$\Rightarrow 0 = \lambda^k + a_{k-1} \lambda^{k-1} + \dots + a_0$$

Which can then be solved for λ . Keep in mind that $\lambda \in \mathbb{C}$ and we might be able to simplify with Euler's formula.

$$e^{ix} = \cos(x) + i\sin(x)$$

If there is a multiple root α of multiplicity j we have

Solutions: $e^{\alpha x}$, $xe^{\alpha x}$, ..., $x^{j-1}e^{\alpha x}$

1.5 Complex roots

If $\alpha = \beta + \gamma i$ is a complex root of $P(\lambda)$, then so is $\bar{\alpha} = \beta - \gamma i$. Hence $f_1 = e^{\alpha x}$ and $f_2 = e^{\bar{\alpha} x}$ are solutions and can be replaced by a linear combination of $\tilde{f}_1 = e^{\beta x} \cos(\gamma x)$ and $\tilde{f}_2 = e^{\beta x} \sin(\gamma x)$. Further if $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_0y = 0$ has real coefficients, then each pair of complex conjugate roots $\beta_j \pm \gamma_j i$ with multiplicity m_j leads to solution

$$x^{l}e^{\beta_{j}x}\left(\cos(\gamma_{j}x)+i\sin(\gamma_{j}x)\right)$$
 for $0 \le l \le m_{j}$

1.6 Separation of variables

A differential equation of oder 1 is separable if it is of the form

$$y' = b(x)g(y)$$
$$\frac{dy}{dx} = b(x)g(y)$$
$$\frac{dy}{g(y)} = b(x)dx$$
$$\int \frac{dy}{g(y)} = \int b(x)dx$$

2 Differentials in \mathbf{R}^n

2.1 Monomial

A monomial of degree e is a function

$$(x_1, \dots, x_n) \mapsto \alpha x_1^{d_1} \cdot \dots \cdot x_n^{d_n}$$

 $e = d_1 + \dots + d_n$

2.2 Polynomial

A polynomial in n variables of degree $\leq d$ is a finite sum of monomials of degree $e \leq d$

2.3 Convergence

Let $(x_k)_{k\in\mathbb{N}}$, $x_k\in\mathbb{R}^n$ and $x_k=(x_{k,1},x_{k,2},\ldots,x_{k,n})$. The following equivalently define $\lim_{k\to\infty} x_k=y$.

(1) $\forall \varepsilon > 0 \exists N \ge 1 \text{ s.t. } \forall k \ge N \quad ||x_k - y|| < \varepsilon$

- (2) For each $i, 1 \leq i \leq n$ the sequence $(x_{k,i})_k$ of real numbers converges to y_i .
- (3) The sequence of real numbers $||x_k y||$ converges to 0.

Let $f: X \subset \mathbf{R}^n \to \mathbf{R}^m$ and $x_0 \in X$, $y \in \mathbf{R}^m$. We say f has a limit to y as $x \to x_0$ where $x \neq x_0$ if any of the following apply

- (1) $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ \forall x \in X, \ x \neq x_0 \ \text{such that} \ \|x x_0\| < \delta$ we have $\|f(x) - y\| < \varepsilon$.
- (2) \forall sequences (x_k) in X such that $\lim x_k = x_0$ and $x_k \neq x_0$ the sequence $f(x_k)$ converges to y.

2.4 Continuity

Let $f: X \subset \mathbf{R}^n \to \mathbf{R}^m$ and $x_0 \in X$. We say f is continuous at x_0 if any of the following apply

- (1) $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.}$ if $x \in X$ satisfies $||x x_0|| < \delta$ then $||f(x) f(x_0)|| < \varepsilon$.
- (2) \forall sequences (x_k) in X s.t. $\lim x_k = x_0$ we have $\lim f(x_k) = f(\lim x_k)$.

f is continuous in X if f is continuous in every point $x_0 \in X$. The following statements also hold

(1) $f(x = x_1, \ldots, x_n) \mapsto (f_1(x), \ldots, f_m(x))$ and $f_i : \mathbf{R}^n \mapsto \mathbf{R}$ is continuous $\Leftrightarrow f_i \ \forall i = 1, \ldots, m$ are continuous.

- (2) Linear functions $x \mapsto Ax$ are continuous.
- (3) Polynomials are continuous.
- (4) Sums, products of continuous functions are continuous.
- (5) Functions of separated variables are continuous if the factors are continuous.
- (6) Composition of continuous functions are continuous.

2.5 Sandwich lemma

If $f, g, h : \mathbf{R}^n \to \mathbf{R}$ where $f(x) < g(x) < h(x) \quad \forall x \in \mathbf{R}^n$. Let $a \in \mathbf{R}^n$.

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \Rightarrow \lim_{x \to a} g(x) = L$$

2.6 Properties of sets

A set $X \subset \mathbf{R}^n$ is

- **bounded**, if the set $\{||x|| \mid x \in X\}$ is bounded in **R**(i.e. $\exists K \ge 0, \forall x \in X : ||x|| \le K$).
- closed, if every sequence $(x_k)_{k \in \mathbb{N}} \subset X$, that converges to some Vector $y \in \mathbb{R}^n$, we have $y \in X$ (i.e. limits of sequences in X are also in X).
- **compact**, if its closed and bounded.
- open if, for any $x = (x_1, x_2, ..., x_n) \in X$, there exists $\delta > 0$ such that the set

$$\{y = (y_1, ..., y_n) \in \mathbf{R}^n \mid |x_i - y_i| < \delta, \forall 1 \le i \le n\}$$

is contained in X.

- **convex**, if $\forall x, y \in X : \lambda x + (1 \lambda)y \in X, \forall 0 \le \lambda \le 1$ (the line segment between x, y is contained in X).
- open, if and only if the complement $Y = \mathbf{R}^n \setminus X$ is closed. (Equivalent definition)

Important examples:

- $(a,b) \subset \mathbf{R}$ is open.
- $[a,b) \subset \mathbf{R}$ is neither open nor closed.
- **R**ⁿ and Ø are both open and closed. There exists no other set in **R**ⁿ which is both open and closed.
- If $X \subseteq \mathbf{R}^n, Y \subseteq \mathbf{R}^m$ are both bounded (rsp. closed/compact) then $X \times Y \subseteq \mathbf{R}^{n+m}$ is bounded (rsp. closed/compact)
- In particular the cartesian product of compact intervals $I_i \in \mathbf{R}$: $I_1 \times I_2 \times ... \times I_n = \{(x_1, x_2, ..., x_n) \in \mathbf{R}^n \mid x_i \in I_i\}$ is compact (i.e. closed and bounded).
- Let $f : \mathbf{R}^n \mapsto \mathbf{R}^m$ be continuous. Then for every closed(/open) set $Y \subseteq \mathbf{R}^m$, the set $f^{-1}(Y)$ is closed(/open).

2.7 Continuous and closed

If $f : \mathbf{R}^n \to \mathbf{R}^m$ is continuous, then for every $Y \subset \mathbf{R}^m$ that is closed the set $f^{-1}(Y) = \{x \in \mathbf{R}^n \mid f(x) \in Y\} \subset \mathbf{R}^n$ is closed. Careful: Does not imply bounded or compact!

2.8 Min-Max theorem

Let $X \subset \mathbf{R}^n$ be a compact set, $f: X \to \mathbf{R}$ a continuous function. Then f is bounded and attains its max and min.

$$f(x^+) = \sup_{x \in X} f(x)f(x^-) \qquad \qquad = \inf_{x \in X} f(x)$$

2.9 Partial derivatives

A partial derivative of a function $f: X \subset \mathbf{R}^n \rightarrow \mathbf{R}$ is obtained by pretending all but one variable are constants and then differentiating the one variable.

$$\frac{\partial f}{\partial x_{0,j}} = \lim_{h \to 0} \frac{f(x_{0,1}, \dots, x_{0,j} + h, \dots, x_{0,n}) - f(x_0)}{h}$$

If $f: \mathbf{R}^n \to \mathbf{R}^m$ for $x_0 \in \mathbf{R}^n$ then

$$\frac{\partial f(x_0)}{\partial x_j} := \begin{pmatrix} \partial f_1(x_0) / \partial x_j \\ \vdots \\ \partial f_m(x_0) / \partial x_j \end{pmatrix}$$

Properties include (assuming partial derivatives for f, g exist w.r.t. x_j)

(1)
$$\frac{\partial f + g}{\partial x_j} = \frac{\partial f}{\partial x_j} + \frac{\partial g}{\partial x_j}$$

(2)
$$\frac{\partial f \cdot g}{\partial x_j} = \frac{\partial f}{\partial x_j} \cdot g + \frac{\partial g}{\partial x_j} \cdot f$$

$$(3) \ \text{if} \ g \neq 0 \text{:} \ \frac{\partial f/g}{\partial x_j} = \frac{\frac{\partial f}{\partial x_j} \cdot g - \frac{\partial g}{\partial x_j} \cdot f}{g^2}$$

2.10 Jacobi Matrix

A Matrix with m rows and n columns where

$$J_f = \left(\frac{\partial f_i}{\partial x_j}\right)_{\substack{1 \le i \le m\\ 1 \le j \le n}}$$

2.11 Gradient

The Jacobian of a function $f: X \subset \mathbf{R}^n \rightarrow \mathbf{R}$. Is often denoted as ∇f . The geometric interpretation is that it indicates the direction and rate of fastest increase.

Remember: $curl(\nabla f) = 0$ is a necessary condition for a vector field to be a gradient!

 $Curl \neq 0 \rightarrow \text{not a potential}$

2.12 Directional derivative

Let direction $v = (a, b) \neq (0, 0)$. Instead of adding +h to one component we add +ah, +bh and so on to all components and find that derivative as we normally would with a limit. Further, we have

$$\frac{df(x_0 + t\vec{\mathbf{v}})}{dt} = J_f(x_0) \cdot \vec{\mathbf{v}}$$

2.13 Differentiabiliy

Let $X \subset \mathbf{R}^n \to \mathbb{R}^{\geq}$ be function and $x_0 \in X$. We say f is differentiable at x_0 if a linear map $u : \mathbf{R}^n \to \mathbf{R}$ exists such that

$$\lim_{x \to x_0, x \neq x_0} \frac{f(x) - f(x_0) - u(x - x_0)}{\|x - x_0\|} = 0$$

and u is called the total differential of f at x_0 . Further, if f, g are differentiable at $x_0 \in X$ we have

(1) f is continuous at x_0

(2) f has all partial derivatives at x_0 and the matrix represents the linear map $df(x_0): x \mapsto Ax$ in the canonical basis is given by the Jacobi Matrix of f at x_0 , i.e. $A = J_f(x_0)$

(3) $d(f+g)(x_0) = df(x_0) + dg(x_0)$

(4) If m = 1 and $f, g: \mathbf{R}^n \to \mathbf{R}$ differentiable in x_0 then so is $f \cdot g$ and if $g \neq 0$ f/g as well.

Lastly we have

All partial derivatives \exists and cont. \Rightarrow f is differentiable

2.14 Tangent space

The approximation of the function at x_0 using one derivative.

$$\{(x,y) \in \mathbf{R}^n \times \mathbf{R}^m \mid g(x,y) = f(x_0,y_0) + Df(x_0,y_0) \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

$$f(x,y) = \sqrt{x^2 + y^2}$$
$$J_f = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$
$$J_f(3,4) = \left(\frac{3}{5}, \frac{4}{5}\right)$$
$$\Rightarrow g(x,y) = 5 + \left(\frac{3}{5}, \frac{4}{5}\right) \begin{pmatrix} x - 3\\ y - 4 \end{pmatrix}$$

The equation $z = 2y^2 + x^2$ describes a surface S in \mathbb{R}^3 , which contains the point P = (1, 1, 3). Find the coordinates of the other point of S that lies on the normal to S at P

The normal at the point (x, y, z) is given by

 $\nabla f = (2x, 4y, -1)$

The normal direction at P is thus given by

n(P) = (2, 4, -1)

The normal line through P is thus

$$g: R \to \mathbf{R}^3, g(t) = (1, 1, 3) + t(2, 4, -1)$$

To find the other point that lies in $im(g) \cap S$, we need to solve

$$f(g(t)) = 0: (1+2t)^2 + 2(1+4t)^2 - 3 + t = 21t + 36t^2 = 0$$

We get t = 0 or $t = -\frac{21}{36} = -\frac{7}{12}$. For t = 0 we get P and the other intersection point is

 $P' = \left(-\frac{1}{6}, -\frac{4}{3}, \frac{43}{12}\right)$

What is the tangent plane of the ellipsoid:

$$2x^2 + 2y^2 + \frac{1}{4}z^2 = 1$$

which is parallel to the plane x + y + z = 1We look for the points on the ellipsoid for which the gradient is parallel to the normal vector (1, 1, 1) of the plane. We let $f(x, y, z) = 2x^2 + 2y^2 + \frac{z^2}{4}$ and thus we must have

$$\nabla f(x, y, z) = (4x, 4y, \frac{z}{2}) = a(1, 1, 1)$$

for a real number a. It follows that $x = y = \frac{a}{4}, z = 2a$ Substituting into the equation for the ellipsoid, we obtain

$$1 = f(x, y, z) = \frac{a^2}{8} + \frac{a^2}{8} + a^2 = \frac{5}{4}a^2 \Rightarrow a^{\pm} = \pm \frac{2}{\sqrt{5}}$$

In order to be parallel to the plane x+y+z=1, the tangent plane has to satisfy the equation x+y+z=b for $b\in R$. Since

$$(x, y, z) = (\frac{a}{4}, \frac{a}{4}, 2a) = (\frac{1}{2\sqrt{5}}, \frac{1}{2\sqrt{5}}, \frac{4}{\sqrt{5}})$$

(or negative)must be satisfied, we find that

$$b^{\pm} = \pm \sqrt{2}$$

The tangent planes are therefore $x + y + z = \pm \sqrt{5}$

2.15 Chain rule

Let $X \subset \mathbf{R}^n$ be open, $\mathcal{Y} \subset \mathbf{R}^m$ be open and let $f: X \rightarrow \mathcal{Y}, g: \mathcal{Y} \rightarrow \mathbf{R}^p$ be differentiable functions. Then $g \circ f = g(f): X \rightarrow \mathbf{R}^p$ is differentiable in X. In particular

$$d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0)$$
$$J_{g \circ f}(x_o) = J_g(f(x_0)) \cdot J_f(x_0)$$
$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$
$$\frac{d}{dt} f(\gamma(t)) = \nabla f(\gamma(t))\gamma'(t)$$

$$\nabla f(-\frac{\sqrt{3}}{2},\frac{3}{2},7) = (6,2,0).$$

Compute

$$\frac{\partial f}{\partial r}(\sqrt{3},\frac{2}{3}\pi,7)$$

where $x=r\cos(\theta), y=r\sin(\theta)$ and z are the usual coordinates. We have

$$g(r, \theta, z) = (r\cos(\theta), r\sin(\theta), z)$$

and therefore (by the chain rule)

$$\frac{\partial f}{\partial r} = \frac{\partial f(g(r,\theta,z))}{\partial r} = \frac{\partial f}{\partial x}\frac{\partial g_1}{\partial r} + \frac{\partial f}{\partial y}\frac{\partial g_2}{\partial r} + \frac{\partial f}{\partial z}\frac{\partial g_3}{\partial r} = \cos(\theta)\frac{\partial f}{\partial x} + \sin(\theta)\frac{\partial f}{\partial y}$$

Notice now that

$$\sqrt{3}\cos\left(\frac{2}{3}\pi\right), \sqrt{3}\sin\left(\frac{2}{3}\pi\right), 7) = (-\frac{\sqrt{3}}{2}, \frac{3}{2}, 7)$$

and therefore we obtain

$$\frac{\partial f}{\partial r} = \cos\left(\frac{2}{3}\pi\right) \cdot 6 + \sin\left(\frac{2}{3}\pi\right) \cdot 2$$

That "notice now" is needed because we want to take ∇f at $\left(-\frac{\sqrt{3}}{2}, \frac{3}{2}, 7\right)$, and since we have $f(g(r, \theta, z))$ we need to find r, θ, z such that $g(r, \theta, z) = \left(-\frac{\sqrt{3}}{2}, \frac{3}{2}, 7\right)$.

2.16 Change of variables

We say f is a change of variables around x_0 if there is a radius $\rho > 0$ s.t. the restriction of f to the Ball $B = \{x \in \mathbf{R}^n \mid ||xx_0|| < \rho\}$ so that the image Y = f(B) is open in \mathbf{R}^n and a differentiable map $g: Y \rightarrow B$ exists, such that $f \circ g = \operatorname{id}_Y$ and $g \circ f = \operatorname{id}_B$. I.e.

 $\left. f \right|_{B(x_0)} \quad \mbox{is a bijection to the image with a differentiable inverse } g$

2.17 Inverse function theorem

Let $X \subseteq \mathbf{R}^n$ be open and $f: X \to \mathbf{R}^n$ differentiable. If $x_0 \in X$ is such that $det(J_f(x_0)) \neq 0$, i.e. $J_f(x_0)$ is invertible, then f is a change of variables around x_0 . Moreover the Jacobian of g at x_0 is defined by

$$J_g(f(x_0)) = J_f(x_0)^{-1}$$

2.18 Higher derivatives

Let $X \subset \mathbf{R}^n$, $f: X \to \mathbf{R}^m$. We say f is of class C' if f is differentiable on X and all of its partial derivatives are continuous. We say $f \in C^k$ for $k \ge 2$ if it is differentiable and each $\partial_{x_i} f$: $X \to \mathbf{R}^m$ is of class C^{k-1} . Further, f is smooth or C^{∞} if $f \in C^k \quad \forall k$. Lastly: mixed partials (up to order k) commute:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_j}$$

2.19 Hessian

The $n \times n$ symmetric matrix

$$\operatorname{Hess}_{f}(x_{0}) := \left(\frac{\partial^{2} f(x_{0})}{\partial x_{i} \partial x_{j}}\right)$$

2.20 Taylor Polynomial

Good for approximation \rightarrow affine function The Taylor polynomial of f at x_0 of order 1 is

$$T_1(\vec{x_0}, \vec{y_0} := f(\vec{x_0}) + \langle \nabla f(\vec{x_0}), \vec{y} \rangle$$
$$\vec{y} = \vec{x} - \vec{x_0}$$
$$\vec{x_0} = (x_0, y_0)$$
$$\vec{x} = (x, y)$$

and the second order

$$T_2(\vec{x_0}, \vec{y_0}) := f(\vec{x_0}) + \langle \nabla f(\vec{x_0}), \vec{y} \rangle + \frac{1}{2} \vec{y} \cdot \operatorname{Hess}_f(\vec{x_0}) \cdot \vec{y}^t$$

Finally, the general form is

$$-\sum_{m_1+\dots+m_n=k}\frac{1}{m_1!\dots m_n!}\frac{\partial^k f(x_1) \cdot y_1^{m_1} \dots y_n^{m_n}}{\partial x_1^{m_1} \dots \partial x_n^{m_n}}$$

Lastly if $f \in C^k$ for $x_0 \in X$ we have

$$f(x) = T_k(x - x_0; x_0) + E_k(f, x, x_0)$$
$$\lim_{x \to x_0} \frac{E_k(f, x, x_0)}{\|x - x_0\|^k} \to 0$$

Consider the following function:

$$f(x,y) := e^{x^2 + y^2} + \log(1 + x^2) + \arctan(xy)$$

a) determine the Taylor plynomial of f at (0,0) up to and including third order.

$$\frac{\partial f(x,y)}{\partial x} = 2xe^{x^2+y^2} + \frac{2x}{1+x^2} + \frac{y}{1+x^2y^2}$$
$$\frac{\partial f(x,y)}{\partial y} = 2ye^{x^2+y^2} + \frac{x}{1+x^2y^2}$$

Direct substitution gives us:

df(0,0) = (0,0)

We now calculate the partial derivatives of second order:

$$\frac{\partial^2 f(x,y)}{\partial x^2} = 2e^{x^2+y^2} + 4x^2e^{x^2+y^2} + \frac{2(1+x^2)-4x^2}{(1+x^2)^2} - \frac{2xy^3}{(1+x^2y^2)^2}$$
$$\frac{\partial^2 f(x,y)}{\partial x \partial y} = 4xye^{x^2+y^2} + \frac{1+x^2y^2-2x^2y^2}{(1+x^2y^2)^2}$$
$$\frac{\partial^2 f(x,y)}{\partial y^2} = 2e^{x^2+y^2} + 4y^2e^{x^2+y^2} - \frac{2x^3y}{(1+x^2y^2)^2}$$

We need the hessian so we have:

$$Hess_f(0,0) = \left[\begin{array}{cc} 4 & 1 \\ 1 & 2 \end{array} \right]$$

We now calculate the partial derivatives of third order. Luckily they all vanish so we have:

$$T_{3}f((0,0);(x,y)) = f(0,0) + \frac{\partial f(0,0)}{\partial x}x + \frac{\partial f(0,0)}{\partial y}y + \frac{1}{2}\frac{\partial^{2}f(0,0)}{\partial x^{2}}x^{2} + \frac{\partial^{2}f(0,0)}{\partial x\partial y}xy + \frac{1}{2}\frac{\partial^{2}f(0,0)}{\partial y^{2}}y^{2} + \frac{1}{6}\frac{\partial^{3}f(0,0)}{\partial x^{3}}x^{3} + \frac{1}{2}\frac{\partial^{3}f(0,0)}{\partial x^{2}\partial y}x^{2}y + \frac{1}{2}\frac{\partial^{3}f(0,0)}{\partial x\partial y^{2}}xy^{2} + \frac{1}{6}\frac{\partial^{3}f(0,0)}{\partial y^{3}}y^{3} = 1 + 2x^{2} + xy + y^{2}$$

2.21 Local max/min

Let $f: X \subset \mathbf{R}^n \to \mathbf{R}$ be differentiable. We say $x_0 \in X$ is a local maximum (minimum) if we can find a neighborhood $B_r(x_0) = \{x \in \mathbf{R}^n \mid ||x - x_0|| < r\} \subset X$

$$\forall x \in B_r(x_0) \quad f(x) \le (\ge) f(x_0)$$

We also have

 $x_0 \in X$ is a local extrema $\Rightarrow \nabla f(x_0) = 0$

2.22 Global extrema

If $f: X \to \mathbf{R}$ is differentiable on the interior of X and X is closed and bounded, then a global extrema of f exists and it is either at a critical point or the boundary of X.

Check $= int(X) \cup bd(X)$

2.23 Definite

We have the following

(1) Positive Definite: All eigenvalues are Positive

(2) Negative Definite: All eigenvalues are Negative

(3) Indefinite: Positive and Negative Eigenvalues

Eigenvalues can be found with the characteristic polynomial:

$$det\left(\begin{pmatrix}0&1\\1&0\end{pmatrix}-\begin{pmatrix}-\lambda&0\\0&-\lambda\end{pmatrix}\right) = det\begin{pmatrix}-\lambda&1\\1&-\lambda\end{pmatrix}$$
$$\Rightarrow \lambda^2 - 1 = 0$$

``

2.24 Calculating determinates

/ \ /

For 2 dimensions we have

$$det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot d - c \cdot b$$

For 3 dimensions we have

$$det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a \cdot det \begin{pmatrix} e & f \\ h & i \end{pmatrix} - b \cdot det \begin{pmatrix} d & f \\ g & i \end{pmatrix} + c \cdot det \begin{pmatrix} d & e \\ g & h \end{pmatrix}$$

2.25 Test critical point

A point is critical: $x_0 \in X$ where $\nabla f(x_0) = 0$. Let $f : X \subseteq \mathbf{R}^n \to \mathbf{R}$ and $f \in C^2$. Let x_0 be a non-degenerate critical point of f. Then

(1) If $\operatorname{Hess}_{f}(x_{0})$ pos def. then x_{0} is a local minimum

(2) If $\operatorname{Hess}_f(x_0)$ neg def. then x_0 is a local maximum

(3) If $\operatorname{Hess}_{f}(x_{0})$ is Indefinite then x_{0} is a saddle point

We cannot use this theorem when x_0 is a degenerate critical point $(det(Hess_f(x_0)) = 0)$ and must decide on a case by case basis!

3 Integrals in \mathbb{R}^n

3.1 Simple integral

For $f: \mathbf{R} \rightarrow \mathbf{R}^n$ the integral is

$$\int_{a}^{b} f(t)dt = \begin{pmatrix} \int_{a}^{b} f_{1}(t)dt \\ \vdots \\ \int_{a}^{b} f_{n}(t)dt \end{pmatrix}$$

3.2 Curve

The image of a function $\gamma : [a, b] \rightarrow \mathbf{R}^n$ where the function γ is continuous and piecewise $\in C^1$.

3.3 Line integral

Let $\gamma : [a, b] \rightarrow \mathbb{R}^n$ be a parametrization of a curve and let $X \subset \mathbb{R}^n$ be a set which contains the image of γ . Further, let $f : X \rightarrow \mathbb{R}^n$ be a continuous function. A line integral then is

$$\int_{\gamma} f(s) \, d\vec{\mathbf{s}} = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \, dt$$

The line integral has the following properties

 \Rightarrow

(1) It is independent of orientation preserving reparametrization, i.e.

$$\begin{split} \gamma &: [a, b] {\rightarrow} \mathbf{R}^n \\ \tilde{\gamma} &: [c, d] {\rightarrow} \mathbf{R}^n \\ \varPhi &: [c, d] {\rightarrow} [a, b] \\ \tilde{\gamma} &= \gamma \circ \varPhi = \gamma(\varPhi) \\ \int_{\gamma} f \ ds &= \int_{\tilde{\gamma}} f \ ds \end{split}$$

(2) Let $\gamma_1 + \gamma_2$ be the path formed by the concatenation of the two curves. Then

$$\gamma_1 + \gamma_2 := \begin{cases} \gamma_1(t) & t \in [a, b] \\ \gamma_2(t) & t \in [b, d+b-c] \end{cases}$$
$$\int_{\gamma_1 + \gamma_2} f \, ds = \int_{\gamma_1} f \, ds + \int_{\gamma_2} f \, ds$$

(3) If $\gamma : [a, b] \rightarrow \mathbb{R}^n$ is a path, let $-\gamma$ be the path traced in the opposite direction, i.e. $(-\gamma)(t) := \gamma(a+b-t)$. Then

$$\int_{-\gamma} f \, ds = -\int_{\gamma} f \, ds$$

Useful trick

In general if $\gamma : [a, b] \to \mathbf{R}^n(t \to \gamma(t))$ is a curve, then $\alpha : [a, b] \to \mathbf{R}^n$ with $\alpha(t) := \gamma(b + a - t)$ traces the same curve in the opposite direction.

3.3.1 Length of curve (Bogenlänge)

The length of a curve (Bogenlänge) from a function f on the interval [a, b] is

$$L = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

$$v(x,y) = \begin{pmatrix} x^2 - 2xy \\ y^2 - 2xy \end{pmatrix}$$
 from (-1, 1) to (1, 1) along the curve
 $y = x^2$
The given parametrization of the curve is $\gamma(t) = \begin{pmatrix} t \\ t^2 \end{pmatrix}$

and the derivative of
$$\gamma(t)$$
 is $\gamma'(t) = \begin{pmatrix} 1\\ 2t \end{pmatrix}$. The vector field $v(\gamma(t))$ is given by $v(\gamma(t)) = \begin{pmatrix} t^2 - 2t^3\\ t^4 - 2t^3 \end{pmatrix}$, and the dot

product of
$$v(\gamma(t))$$
 and $\gamma'(t)$ is
 $[v(\gamma(t))\cdot\gamma'(t) = (t^2 - 2t^3)(1) + (t^4 - 2t^3)(2t) = t^2 - 2t^3 + 2t^5 - 4t^4$

The integral of v along the curve γ is

$$\begin{split} \int_{\gamma} v, d\gamma &= \int_{-1}^{1} t^2 - 2t^3 + 2t^5 - 4t^4 dt \\ &= \left[\frac{t^3}{3} - \frac{t^4}{2} + \frac{t^6}{3} - \frac{4t^5}{5} \right]_{t=-1}^{1} \\ &= \frac{1}{3} - \frac{1}{2} + \frac{1}{3} - \frac{4}{5} - \left(-\frac{1}{3} + \frac{1}{2} + \frac{1}{3} + \frac{4}{5} \right) \\ &= \frac{2}{3} - \frac{8}{5} = -\frac{14}{15}. \end{split}$$

3.4 Potential

A differentiable scalar field $g: X \subset \mathbf{R}^n \to \mathbf{R}$ such that $\nabla g = f$, $f: X \to \mathbb{R}^n$ is called a potential for f. This can make stuff easier:

$$\int_{\gamma} f \, ds = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \, dt$$
$$= \int_{a}^{b} \nabla g(\gamma(t)) \cdot \gamma'(t) \, dt$$
$$= \int_{a}^{b} \frac{d}{dt} (g \circ \gamma) \, dt$$
$$= (g \circ \gamma)(b) - (g \circ \gamma)(a)$$

 $f(x,y)=(2xy^2-5x^4y+5,-7y^6-x^5+2x^2y)$ is conservative and its potential is:

$$g(x,y) = x^2y^2 - x^5y + 5x - y^7$$

We want to compute $\int_{\gamma} f \cdot ds$ where γ is the parametrised curve:

$$\gamma : \left[\frac{\pi}{4}, \frac{5\pi}{4}\right] \to \mathbb{R}^2$$
$$\phi : \left[\frac{1}{2} + \frac{1}{\sqrt{2}}\cos(t), \frac{1}{2} + \frac{1}{\sqrt{2}}\sin(t)\right]$$

So we have:

$$g\left(\psi\left(\frac{5\pi}{4}\right)\right) - g\left(\psi\left(\frac{\pi}{4}\right)\right) = g(0,0) - g(1,1) = -4$$

It should be noted that not every function has a potential! Example:

$$f(x, y) = (2xy^2, 2x)$$
$$\frac{\partial g}{\partial x} = 2xy^2 \Rightarrow g(x, y) = x^2y^2 + h(y)$$
$$\frac{\partial g}{\partial y} = 2x \neq 2x^2y + h'(y)$$

$$f(x,y) = \begin{pmatrix} 3x^2y \\ x^3 \end{pmatrix}$$
$$\frac{\partial F_x}{\partial y} = \frac{\partial}{\partial y}(3x^2y) = 3x^2 \qquad \frac{\partial F_y}{\partial x} = \frac{\partial}{\partial x}x^3 = 3x^2$$

If starshaped, integrability is guaranteed. The potential function is

$$\frac{\partial f}{\partial x} = (3x^2y)$$
 $\frac{\partial f}{\partial y} = x^3$

We integrate $\frac{\partial f}{\partial x}$ and we see that the consant can depent on y.

$$f(x,y) = \int \frac{\partial f}{\partial x} dx = \int 3x^2 y dx = x^3 y + K(y)$$

With partiel differentiation with respect of y and under consideration of $\frac{\partial f}{\partial y} = x^3$ we get

$$\frac{\partial f}{\partial y} = x^3 + K'(y) = x^3 \quad K'(y) = 0 \to K(y) = const. = C$$

3.5 Conservative vector field

Let $f: X \subset \mathbf{R}^n \to \mathbf{R}^n$ be a continuous vector field. The following are equivalent.

- (1) If for any $x_1, x_2 \in X$ the line integral $\int_{\gamma} f \, ds$ is independent **3** of the curve in X from x_1 to x_2 , then the vector field f is conservative.
- (2) Any line integral of f around a closed curve is 0.
- (3) A potential for f exists.

We also have the following necessary but not sufficient condition

$$f$$
 is conservative $\Rightarrow \frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$

3.6 Path connected

Let $X \subset \mathbf{R}^n$ be open. X is said to be path connected if for every pair of points $x, y \in X$ a C^1 path $\gamma : (0, 1] : \to X$ exists with $\gamma(0) = x, \gamma(1) = y$.

3.7 Changing the order of integration

Changing the order of integration is sometimes necessary, as in the following example.

$$\int_{0}^{1} \int_{x}^{1} e^{y^{2}} dy dx = \int_{0}^{1} \int_{0}^{y} e^{y^{2}} dx dy$$
$$= \int_{0}^{1} \left(x \cdot e^{y^{2}} \Big|_{x=0}^{x=y} \right) dy$$
$$= \int_{0}^{1} y \cdot e^{y^{2}} dy$$
$$= \frac{e^{y^{2}}}{2} \Big|_{0}^{1}$$

3.8 Star shaped

A subset $X \subset \mathbf{R}^n$ is called star shaped if $\exists x_0 \in X$ such that $\forall x \in X$ the line segment joining x_0 to x is contained in X. Note

Convex
$$\Rightarrow$$
 Star shaped

Further if X is a star shaped open set of \mathbf{R}^n and $f\in C^1$ is a vector field s.t.

$$\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i} \quad \forall i, j \quad \Rightarrow \quad f \text{ is conservative}$$
$$curl(f) = \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix} \quad \Rightarrow \quad f \text{ is conservative}$$

3.9 Curl

Let $X \subset \mathbf{R}^3$ be open and $f: X \to \mathbf{R}^3$ be a C^1 vector field. Then the curl of f is the vector field on X defined by

$$curl(f) := egin{pmatrix} \partial_y f_3 &- \partial_z f_2 \ \partial_z f_1 &- \partial_x f_3 \ \partial_x f_2 &- \partial_y f_1 \end{pmatrix}$$

3.10 Partition

A partition P of a closed rectangle $Q = I_1 \times \cdots \times I_n$ where $I_k = [a_k, b_k]$ is a subcollection of rectangular boxes $Q_1, \ldots, Q_k \subset Q$ such that

(1)
$$Q = \bigcup_{j=1}^{k} Q_j$$

(2) Int $Q_i \cap$ int $Q_j = \emptyset \quad \forall i \neq j$
and $Norm(P) = \delta_P := \max(\operatorname{diam} Q_j)$ while $vol(Q) = \prod_{i=1}^{n} (b_i)$

3.11 Riemann Sum

Riemann sum of f, for partition P, interlude point $\{\xi_i\}$ is the sum

$$R(f, P, \xi) = \sum_{j=1}^{k} f(\xi_i) \cdot vol(Q_j)$$

For the lower sum instead of $f(\xi_i)$ use $\inf_{x \in Q_j} f(x)$ and for upper sum $\sup_{x \in Q_j} f(x)$

3.12 Integrable

The lower Riemann sum equals the upper Riemann sum. We have for $f: \mathbf{R}^n \rightarrow \mathbf{R}$, Q rectangular boxes in \mathbf{R}^n

- (1) f is continuous on $Q \Rightarrow f$ is integrable
- (2) $f, g: Q \subset \mathbf{R}^n \to \mathbf{R}$ integrable, $\alpha, \beta \in \mathbf{R} \Rightarrow \alpha f + \beta g$ is integrable and equals

$$\int_{Q} (\alpha f + \beta g) \, dx = \alpha \int_{Q} f \, dx + \beta \int_{Q} g \, dx$$

(3) If $f(x) \le g(x) \quad \forall x \in Q$ then

$$\int_Q f(x) \ dx \le \int_Q g(x) \ dx$$

(4) if $f(x) \ge 0$ then

$$\int_Q f(x) \ dx \ge 0$$

(5) We have

$$\begin{split} \left| \int_{G} f(x) \ dx \right| &\leq \int_{Q} |f(x)| \ dx \\ &\leq \Big(\sup_{Q} |f(x)| \Big) \cdot vol(Q) \end{split}$$

(6) If f = 1 then

$$\int_Q 1 \ dx = vol(Q)$$

3.13 Fubini's theorem

Let $Q = I_1 \times \cdots \times I_n$ and f be continuous on Q. Then

$$\int_{Q} f(x_1, \dots, x_n) dx_1 \dots dx_n$$
$$= \int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f(x_1, \dots, x_n) dx_n \dots dx_1$$

Should the domain of integration be of the type $D_1 := \{(x, y) \mid a \le x \le b \text{ and } g(x) < y < h(x)\}$, then

$$\int_D f(x,y) \, dx \, dy = \int_a^b \int_{g(x)}^{h(x)} f(x,y) \, dy \, dx$$

 $D_i - a_i$ | If on the other hand $D_2 := \{(x, y) \mid c \le y \le d \text{ and } G(y) < x < H(y)\}$, then

$$\int_D f(x,y) \, dx dy = \int_c^d \int_{G(y)}^{H(y)} f(x,y) \, dx \, dy$$

3.14 Negligible sets in \mathbb{R}^n

If for $1 \leq m \leq n$ a parametrized m-set in \mathbf{R}^n is a continuous function

$$\varphi: [a_1, b_1] \times \cdots \times [a_m, b_m]$$

which is C^1 on $(a_1, b_1) \times \cdots \times (a_m, b_m)$, then a subset $Y \subset \mathbf{R}^n$ is negligible if there exist finitely many parametrized m_i -sets $\varphi_i : X_i \to \mathbf{R}^n$ with $m_i < n$ such that

 $Y \subset \bigcup \varphi_i(X_i)$

This means in practice that when we split up an integral we don't need to worry about counting the bounds twice. We also have:

If $Y \subset \mathbf{R}^n$ closed, bounded and negligible

$$\Rightarrow \int_Y f \, dx_1 \, \dots \, dx_n = 0 \text{ for any } f$$

3.15 Improper Integrals

Let $f: X \subset \mathbf{R}^n \to \mathbf{R}^n$ be a non compact set and f a function such that $\int_K f \, dx$ exists for every compact set $K \subset X$ and suppose $f \geq 0$. Finally we have a sequence of regions X_k $k = 1, 2, \ldots$ s.t.

(1) Each region X_k is closed and bounded

(2)
$$X_k \subset X_{k+1}$$

(3)
$$\bigcup_{k=1}^{\infty} X_k = X$$

then

$$\int_X f \ dx := \lim_{n \to \infty} \int_{X_n} f \ dx$$

3.16 Change of variables

Let $\varphi: X \to Y$ be a continuous map, where $X = X_0 \cup B$, $Y = Y_0 \cup C$ are closed and bounded sets with X_0 , Y_0 open, B, C negligible subsets of \mathbf{R}^n . Suppose $\varphi: X_0 \to Y_0$ is C^1 and bijective with $det J_{\varphi}(x) \neq 0 \quad \forall x \in X_0$. Let $Y = \varphi(X)$. Suppose $f: Y \to \mathbf{R}$ is continuous, then

$$\int_{Y} f(y) \, dy = \int_{\varphi^{-1}(Y)} f(\varphi(x)) \cdot |\det J_{\varphi}(x)| \, dx$$

Here an example with polar coordinates on a quarter circle:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \cos(\theta) \\ r \sin(\theta) \end{pmatrix}$$
$$J = \begin{pmatrix} \cos(\theta) & -r \sin(\theta) \\ \sin(\theta) & r \cos(\theta) \end{pmatrix}$$
$$det(J) = r$$
$$dx \, dy = r \, dr \, d\theta$$
$$\int_X \frac{dx \, dy}{1 + x^2 + y^2} = \int_0^{\frac{\pi}{2}} \int_0^1 \frac{1}{1 + r^2} \cdot r \, dr \, d\theta$$
$$= \frac{\log(1 + r^2)}{2} \Big|_0^1$$

Koordinatentransformationen in \mathbb{R}^2

	Polarkoordinaten			
Definition	Maximaler Definitionsbereich	Volumenelement		
$x = r \cos \varphi$	$0 \le r < \infty$	$dxdy = \underline{r}drd\varphi$		_
$y = r \sin \varphi$	$0 \le \varphi < 2\pi$	\sim	def	19
	Elliptische Koordinaten	1	1	
Definition	Maximaler Definitionsbereich	Volumenelement	1	
Denmition	Maximaler Defilitionspereich	volumeneiement	1	
$x = ra\cos\varphi$	$0 \le r < \infty$	$dxdy = \underline{abr}drd\varphi$	1	

Koordinatentransformationen in \mathbb{R}^3

	Zylinderkoordinaten	L		
Definition	Definition Maximaler Definitionsbereich Volumenele			
$x = r \cos \varphi$	$0 \le r < \infty$	$dxdydz = \underline{r}drd\varphi dz$		
$y = r \sin \varphi$	$0 \le \varphi < 2\pi$			
z = z	$-\infty < z < \infty$			
	Kugelkoordinaten			
Definition	Maximaler Definitionsbereich	Volumenelement		
$x = r \sin \theta \cos \varphi$	$0 \le r < \infty$	$dxdydz = \underline{r}^2 dr \underline{\sin \theta} d\theta d\varphi$		
$y = r \sin \theta \sin \varphi$	$0 \le \theta \le \pi$			

3.17 Green's formula

Let X be a closed and bounded region in \mathbb{R}^2 . Let γ be a curve forming the boundary of X.

$$\int \int_X \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) dx \, dy = \int_\gamma f \, ds$$

where
$$f:(x, y) \rightarrow \begin{pmatrix} f_1(x, y) \\ f_2(x, y) \end{pmatrix}$$
. There are implicit assumptions.

- (1) We assume that the vector field $f = (f_1, f_2)$ has components f_1, f_2 s.t. $\frac{\partial f_2}{\partial x}, \frac{\partial f_1}{\partial y}$ exist in the region X. The usual assumption is that if $f \in C^1$, then $\frac{\partial f_i}{\partial x}, \frac{\partial f_i}{\partial y}$ i = 1, 2 exist and are continuous so that curl(f) is continuous. Thus the integral on the left side exists.
- (2) The region X needs to be closed and bounded and that its boundary is a simple closed parametrized curve $\gamma : [a, b] \rightarrow \mathbb{R}^2$. (closed: $\gamma(a) = \gamma(b)$, simple: no knots)
- (3) X is always to the left hand side of a tangent vector to the boundary (corners no problem).
- (4) Unions of simple closed curves also work (eg. doughnut). Then we would have

$$\int \int_X curl(f) \, dx \, dy = \sum_{i=1}^k \int_{\gamma_i} f \, ds$$

If we wanted to calculate the area of a set, then handy functions with curl(f)=1 are

$$f = (0, x) \text{ or } f = (-y, 0) \text{ or } f = \left(\frac{-y}{2}, \frac{x}{2}\right)$$

We also have

$$\int_{\gamma} f \, ds = \int_{\gamma_1} f \, ds + \int_{\gamma_2} f \, ds$$

Straight forward application of Green's formula: if γ is a simple closed param. curve. Calculate

$$\int_{\gamma} f \, ds = \int_{b}^{b} \langle f\gamma(t) \rangle, \gamma'(t) \rangle dt$$

 γ simple closed parameter curve. Compute:

$$\int_{\partial A} f(x,y) dx dy \text{ for } f(x,y) = f: (x, y) \rightarrow \begin{pmatrix} \sqrt{1+x^3} \\ 2xy \end{pmatrix}$$

 $\partial A = d_1 + d_2 + d_3$ Direct Computation:

$$\int_\partial A = \int_\partial d_1 + \int_\partial d_2 + \int_\partial d_3$$

Green's Formula:

$$A = (x, y)|0 \ge x \ge 1, 0 \ge y \ge 3x$$
$$\partial x f_2 - \partial y f_1 = 2y - 0 = 2y$$
$$\int_{\partial A} f ds = \int_A 2y dx dy = \int_0^1 \int_0^{3x} 2y dy dx = \int_0^1 9x^2 dx = 3$$

Calculate the area of $\Omega := (x, y) \in \mathbf{R}^2 | (x-2)^2 - 1 \le y \le 0$ with the Green's formula. First, calculate intersection points:

$$(-2)^{2} - 1 = 0$$

= $x^{2} - 4x + 3$
= $(x - 3)(x - 1)$

We parametrisize:

(x)

$$\gamma_1 : [1,3] \to \mathbf{R}^2 : t \to (t, (t-2)^2 - 1)$$

 $\gamma_2 : [3,1] \to \mathbf{R}^2 : t \to (t,0)$

Note that is counter clockwise. We consider the vector field $v : \mathbf{R}^2 \to \mathbf{R}^2 : (x, y) \to (0, x)$. It is

$$curlv(x,y)=\frac{\partial v_y}{\partial x}(x,y)-\frac{\partial v_x}{\partial y}(x,y)=1$$

$$\begin{split} \int_{\Omega} 1 dx dy &= \int \int_{\Omega} curl v dx dy = \int_{\gamma_1} v ds + \int_{\gamma_2} v ds \\ &\int_1^3 v(\gamma_1(t)) \gamma_1'(t) dt + \int_3^1 v(\gamma_2(t)) \gamma_2'(t) dt \\ &= \int_1^3 (0,t) (1,2(t-2)) dt + \int_3^1 (0,t) (1,0) (=0) dt \\ &= \int_1^3 2t^2 - 4t dt = \frac{2}{3}t^3 - 2t^2 |_1^3 \\ &= 18 - \frac{2}{3} - 18 + 2 = \frac{4}{3} \end{split}$$

4 Other

4.1 Dreiecksungleichung

 $\forall x,y \in \mathbf{R}: ||x|-|y|| \leq |x\pm y| \leq |x|+|y|$

4.2 Bernoulli Ungleichung

 $\forall x \in \mathbf{R} \ge -1 \text{ und } n \in \mathbf{N} : (1+x)^n \ge 1 + nx$

4.3 Exponentialfunktion

$$exp(z) = \lim_{n \to \infty} (1 + \frac{z}{n})^n$$

Die reelle Exponentialfunktion $exp : \mathbf{R} \to]0, \infty[$ ist streng monoton wachsend, stetig und surjektiv. Es gelten weiter folgende Rechenregeln:

1.
$$exp(x+y) = exp(x) * exp(y)$$

- 2. $x^a := exp(a * ln(x))$
- 3. $x^0 = 1 \quad \forall x \in \mathbf{R}$
- 4. $exp(iz) = cos(z) + i * sin(z) \quad \forall z \in \mathbf{C}$

5.
$$exp(i * \frac{\pi}{2}) = i$$

- 6. $exp(i\pi) = -1$ und $exp(2\pi i) = 1$
- 7. Für a > 0 ist $]0, +\infty[\rightarrow]0, +\infty[$ als $x \to x^a$ eine streng monoton wachsende stetige Bijektion

Merke: e^x entspricht exp(x).

4.4 Natürliche Logaritmus

Der natürliche Logaritmus wir als $ln:]0, \infty[\rightarrow \mathbf{R}$ bezeichnet und ist eine streng monoton wachsende stetige funktion. Es gilt auch, dass

1.
$$ln(1) = 0$$

2. ln(e) = 1

3. ln(a * b) = ln(a) + ln(b)

4.
$$ln(a/b) = ln(a) - ln(b)$$

5.
$$ln(x^a) = a * ln(x)$$

6.
$$x^a * x^b = x^{a+b}$$

7.
$$(x^a)^b = x^{a*b}$$

8.
$$ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n \quad (-1 < x \le 1)$$

4.5 Faktorisierungs Lemma

$$a^{n} - b^{n} = (a - b)(a^{n-1} + ba^{n-2} + \dots + b^{n-2}a + b^{n-1})$$

4.6 Sinus Abschätzung

Es gilt $|\sin(x)| \le |x|$ mit folgendem Beweis:

$$f(x) = x - \sin(x), x \ge 0$$
$$f'(x) = 1 - \cos(x) \ge 0$$

Weil f(0) = 0, $f(x) \ge 0$ für x > 0. Dann $|\sin(x)| \le |x|$ einfach.

4.7 Trigonometrische Funktionen

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad r = \infty$$
$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad r = \infty$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \qquad r = \infty$$

$$\ln(x+1) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x}{k} \qquad r = 1$$

$$\begin{split} \mathrm{e}^{x} &= 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \mathcal{O}(x^{5}) \\ & \sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \mathcal{O}(x^{7}) \\ & \sinh(x) = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \mathcal{O}(x^{7}) \\ & \cos(x) = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \mathcal{O}(x^{8}) \\ & \cosh(x) = 1 + \frac{x^{2}}{2} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \mathcal{O}(x^{8}) \\ & \tan(x) = x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \mathcal{O}(x^{7}) \\ & \tanh(x) = x - \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \mathcal{O}(x^{7}) \\ & \log(1 + x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \mathcal{O}(x^{5}) \\ & (1 + x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^{2} + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^{3} + \mathcal{O}(x^{4}) \\ & \sqrt{1 + x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{x^{3}}{16} - \mathcal{O}(x^{4}) \end{split}$$

	0°	30°	45°	60°	90°	120°	135°	150°	180°
angle	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$2\pi/3$	$3\pi/4$	$5\pi/6$	π
sin	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$
cos	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$	$-\frac{\sqrt{1}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{4}}{2}$
tan		$\sqrt{\frac{1}{3}}$	$\sqrt{\frac{2}{2}}$	$\sqrt{\frac{3}{1}}$	•	$-\sqrt{\frac{3}{1}}$	$-\sqrt{\frac{2}{2}}$	$-\sqrt{\frac{1}{3}}$	$-\sqrt{\frac{0}{4}}$
cot	•	$\sqrt{\frac{3}{1}}$	$\sqrt{\frac{2}{2}}$	$\sqrt{\frac{1}{3}}$	0	$-\sqrt{\frac{1}{3}}$	$-\sqrt{\frac{2}{2}}$	$-\sqrt{\frac{3}{1}}$	•
csc	•	$\frac{2}{\sqrt{1}}$	$\frac{2}{\sqrt{2}}$	$\frac{2}{\sqrt{3}}$	$\frac{2}{\sqrt{4}}$	$\frac{2}{\sqrt{3}}$	$\frac{2}{\sqrt{2}}$	$\frac{2}{\sqrt{1}}$	•
sec	$\frac{2}{\sqrt{4}}$	$\frac{2}{\sqrt{3}}$	$\frac{2}{\sqrt{2}}$	$\frac{2}{\sqrt{1}}$	•	$-\frac{2}{\sqrt{1}}$	$-\frac{2}{\sqrt{2}}$	$-\frac{2}{\sqrt{3}}$	$-\frac{2}{\sqrt{4}}$

und es gilt $\cosh^2(x) - \sinh^2(x) = 1$

4.9 Funktionen Verknüpfung

 $x\mapsto (g\circ f)(x):=g(f(x))$

5 Topics from Analysis I

5.1 Partial Integration

$$\int f'(x)g(x) \, \mathrm{d}x = f(x)g(x) - \int f(x)g'(x) \, \mathrm{d}x$$

5.2 Substitution

To calculate $\int_a^b f(g(x)) dx$: Replace g(x) by u and integrate $\int_{g(a)}^{g(b)} f(u) \frac{du}{g'(x)}$.

5.3 Partial fraction decomposition

Let p(x), q(x) be 2 Polynomials. $\int \frac{p(x)}{q(x)}$ can be computed as follows:

- 1. If deg(p) \geq deg(q), we do a Polynomdivision. This leads to the Integral $\int a(x) + \frac{r(x)}{q(x)}$.
- 2. Find the roots of q(x).
- 3. Per root: Create one partial fraction.
 - non-repeating, real: $x_1 \to \frac{A}{x-x_1}$
 - multiplicity *n*, real: $x_1 \rightarrow \frac{A_1}{x-x_1} + \ldots + \frac{A_r}{(x-x_1)^r}$
 - non-repeating, complex: $x^2 + px + q \rightarrow \frac{Ax+B}{x^2 + px + q}$
 - multiplicity n, complex: $x^2 + px + q \rightarrow \frac{A_1x + b_1}{x^2 + nx + q} + \dots$

6 Trigonometrie

6.1 Regeln

6.1.1 Periodizität

- $\sin(\alpha + 2\pi) = \sin(\alpha) \quad \cos(\alpha + 2\pi) = \cos(\alpha)$
- $\tan(\alpha + \pi) = \tan(\alpha)$ $\cot(\alpha + \pi) = \cot(\alpha)$

6.1.2 Parität

- $\sin(-\alpha) = -\sin(\alpha)$ $\cos(-\alpha) = \cos(\alpha)$
- $\tan(-\alpha) = -\tan(\alpha)$ $\cot(-\alpha) = -\cot(\alpha)$

6.1.3 Ergänzung

- $\sin(\pi \alpha) = \sin(\alpha) \quad \cos(\pi \alpha) = -\cos(\alpha)$
- $\tan(\pi \alpha) = -\tan(\alpha)$ $\cot(\pi \alpha) = -\cot(\alpha)$

6.1.4 Komplemente

- $\sin(\pi/2 \alpha) = \cos(\alpha)$ $\cos(\pi/2 \alpha) = \sin(\alpha)$
- $\tan(\pi/2 \alpha) = -\tan(\alpha)$ $\cot(\pi/2 \alpha) = -\cot(\alpha)$

6.1.5 Doppelwinkel

- $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$
- $\cos(2\alpha) = \cos^2(\alpha) \sin^2(\alpha) = 1 2\sin^2(\alpha)$ • $\tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}$

6.1.6 Addition

- $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$
- $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$
- $\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 \tan(\alpha)\tan(\beta)}$

6.1.7 Subtraktion

- $\sin(\alpha \beta) = \sin(\alpha)\cos(\beta) \cos(\alpha)\sin(\beta)$
- $\cos(\alpha \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$
- $\tan(\alpha \beta) = \frac{\tan(\alpha) \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$

6.1.8 Multiplikation

- $\sin(\alpha)\sin(\beta) = -\frac{\cos(\alpha+\beta)-\cos(\alpha-\beta)}{2}$ • $\cos(\alpha)\cos(\beta) = \frac{\cos(\alpha+\beta)+\cos(\alpha-\beta)}{2}$
- $\sin(\alpha)\cos(\beta) = \frac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}{2}$

6.1.9 Potenzen

- $\sin^2(\alpha) = \frac{1}{2}(1 \cos(2\alpha))$
- $\cos^2(\alpha) = \frac{1}{2}(1 + \cos(2\alpha))$
- $\tan^2(\alpha) = \frac{1 \cos(2\alpha)}{1 + \cos(2\alpha)}$

6.1.10 Diverse

- $\sin^2(\alpha) + \cos^2(\alpha) = 1$
- $\cosh^2(\alpha) \sinh^2(\alpha) = 1$
- $\sin(z) = \frac{e^{iz} e^{-iz}}{2}$ und $\cos(z) = \frac{e^{iz} + e^{-iz}}{2i}$
- $\tan(x) = \frac{\sin(x)}{\cos(x)} \quad \forall z \notin \{\frac{\pi}{2} + \pi k\}$
- $\cot(x) = \frac{\cos(x)}{\sin(x)}$
- $\arcsin(x) = \sin(x)\cos(x)$
- $\cos(\arccos(x)) = x$
- $\sin(\arccos(x)) = \frac{1}{\sqrt{1-x^2}}$
- $\sin(\arctan(x)) = \frac{x}{\sqrt{x^2+1}}$

• $\cos(\arctan(x)) = \frac{1}{\sqrt{x^2+1}}$

- $\sin(x) = \frac{\tan(x)}{\sqrt{1+\tan(x)^2}}$
- $\cos(x) = \frac{1}{\sqrt{1+\tan(x)^2}}$

7 Tabellen

7.1 Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
$(x-1)e^x$	xe^x	$(x+1)e^x$
$\frac{x^{-a+1}}{-a+1}$	$\frac{1}{x^a}$	$rac{a}{x^{a+1}}$
$\frac{x^{a+1}}{a+1}$	$x^a \ (a \neq -1)$	$a \cdot x^{a-1}$
$\frac{1}{k\ln(a)}a^{kx}$	a^{kx}	$ka^{kx}\ln(a)$
$\ln x $	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{2}{3}x^{3/2}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
	$\frac{\sin(x)^2}{2}$	$\sin(x)\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$\frac{1}{2}(x - \frac{1}{2}\sin(2x))$	$\sin^2(x)$	$2\sin(x)\cos(x)$
$\tan(x) - x$	$\tan(x)^2$	$2 \sec(x)^2 \tan(x)$
$-\cot(x)-x$	$\cot(x)^2$	$-2\cot(x)\csc(x)^2$
$\frac{1}{2}(x+\frac{1}{2}\sin(2x))$	$\cos^2(x)$	$-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$ $1 + \tan^2(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\log(\cosh(x))$	$\tanh(x)$	$\frac{1}{\cosh^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$rac{1}{c} \cdot e^{cx}$	e^{cx}	$c \cdot e^{cx}$
$x(\ln x -1)$	$\ln x $	$\frac{1}{x}$
$\frac{1}{2}(\ln(x))^2$	$rac{\ln(x)}{x}$	$\frac{1\!-\!\ln(x)}{x^2}$
$\frac{x}{\ln(a)}(\ln x -1)$	$\log_a x $	$\frac{1}{\ln(a)x}$

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	7.1.1 Potenzen der Winkelf	unktion
$\arcsin(x)/\arccos(x)$	$\frac{1/-1}{\sqrt{1-x^2}}$	$\sin^{2}(x) = \frac{1}{2}(1 - \cos(2x))$ $\cos^{2}(x) = \frac{1}{2}(1 + \cos(2x))$	
$\arctan(x)$	$\frac{1}{1+x^2}$	7.1.2 Funktionen Verknüpfu	ing
$x \arcsin(x) + \sqrt{1 - x^2}$	$\arcsin(x)$	$x\mapsto (g\circ f)(x):=g(f(x))$	
$x \arccos(x) - \sqrt{1 - x^2}$	$\arccos(x)$	7.1.3 Häufungspunkt	
$x \arctan(x) - \frac{1}{2} \ln(1+x^2)$	$\arctan(x)$	$\begin{vmatrix} x_0 \in \mathbf{R} \text{ ist ein } \mathbf{H} \mathbf{\ddot{a}} \mathbf{u} \mathbf{f} \mathbf{u} \mathbf{g} \mathbf{s} \mathbf{p} \mathbf{u} \mathbf{k} \mathbf{t} \\ \delta, x_0 + \delta[\backslash \{x_0\}) \cap \mathbf{D} \neq \emptyset \end{vmatrix}$	der Menge D , falls $\forall \delta > 0$ (] $x_0 -$
$\ln(\cosh(x))$	$\tanh(x)$	7.1.4 Ordinary differential e	equations (ODE's)
$x^x \ (x > 0)$	$x^x \cdot (1 + \ln x)$	Given F , a function of x, y , and d of the form	lerivatives of y. Then an equation
$f(x)^{g(x)}$	$e^{g(x)ln(f(x))}$	$F(x, y, y', \dots)$	$(\cdot, y^{(n)}) = 0$
$f(x) = \cos(\alpha)$	$f(x)^n = \sin(x + n\frac{\pi}{2})$	is an implicit ODE of order n . O	
$f(x) = \frac{1}{ax+b}$	$f(x)^{n} = (-1)^{n} * a^{n} * n! * (ax+b)^{-n+1}$	derivative. Implicit means the equivalent of the derivative of the	uation equais 0.
$-\ln(\cos(x))$	$\tan(x)$	A linear ODE is homogenous when wise.	en $b(x) = 0$. Inhomogenous other-
$\ln(\sin(x))$	$\cot(x)$	7.1.6 Vector Field	
$\ln(\tan(\frac{x}{2}))$	$\frac{1}{\sin(x))}$	A function $f : \mathbf{R}^n \rightarrow \mathbf{R}^n$.	
$\ln\left(\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right)$	$\frac{1}{cos(x)}$	7.1.7 Kritische Stelle	
		Eine kritische Stelle einer Funk oder undefiniert ist.	ation ist ein x_0 an der $f'(x_0)$ null
$\mathbf{f}(\mathbf{x})$	$\mathbf{F}(\mathbf{x})$	7.2 Important	
$\int f'(x)f(x) \mathrm{d}x$	$rac{1}{2}(f(x))^2$	$ \begin{split} \hline & \text{Welche der folgenden Punktionen sind stetig?} \\ & \mathbb{R} \left(x, y, z \right) = x^2 + y^2 + 3z \\ & \Box f(x,y) = \inf\{x^k + y^k k \in \mathbb{Z} \}, \text{ for } (x,y) \in \mathbb{R}^2_{\geq 0} \end{split} $	Set $X \subseteq \mathbb{R}^n$ offen, $f : X \mapsto \mathbb{R}^n$ ein \mathbb{C}^3 Funktion, $\gamma : [a, b] \mapsto X$ ein parametrisferter Weg. Welche Aussagen sind horrekl? \mathbb{M} Infla $g : X \mapsto \mathbb{R}$ ein Potential von f ist, dann ist für jede Konstanter $\mathbb{C} \in \mathbb{R}, \lambda := g + \lambda$ such ein Potential von f
$\int rac{f'(x)}{f(x)} \; \mathrm{d}x$	$\ln f(x) $	B $f(x, y) = \inf(x^{k} + x^{k}) \in \mathbb{Z}$, fite $0 \le x, y < 1$ B $f(x, y) = \int_{0}^{x} \cosh(dx) dx$, fite $x < y$ Welche der folgenden A usegane int wah? \square sei pr $(\mathbb{R}^{2} \to \mathbb{R}, (r, y)) := x$ und $A \subseteq \mathbb{R}^{2}$ abgeschlossen, dann ist such $pr(x)$, abgenchossen	B das Vektorfeld f ist genan dann konservativ, wenn f ein Potential g besitat □ falls X sternförmig ist, ist f homservativ □ falls för alle i, j ∈ {1,,n} die Gleichung ∂ _{xj} f _i = ∂ _{xi} f _j gilt, dann ist f homservativ
$\int_{-\infty}^{\infty} e^{-x^2} \mathrm{d}x$	$\sqrt{\pi}$	 ☑ Falls A ⊆ Rⁿ goschlossen ist, dann ist A^s offen □ Die Menge O ⊆ Rⁿ ist offen genau dann wenn O nicht abgeschlossen ist ☑ Sei f : [0, 1]ⁿ ⇒ R stetig, dann ist f beschränkt 	$\label{eq:constraint} \begin{array}{ c c c } \hline \square & \operatorname{seien} A_1, \dots, A_m \subseteq X & \operatorname{offen} \operatorname{mit} U_{m-1}^m A_m = X. & \operatorname{Falls} f_{1A_k} & \operatorname{fir alle} \\ \hline & k & \operatorname{konservativ} & \operatorname{ist}, & \operatorname{kann} & \operatorname{ist} f & \operatorname{konservativ} \\ \hline & & \operatorname{Seien} A_1 B \subseteq \mathbb{R}^2 & \operatorname{zwei} & \operatorname{Mengen} & \operatorname{mit} X_A, X_B : \mathbb{R}^2 \rightarrow \mathbb{R} & \operatorname{dist} & \operatorname{dasugabilitygen} \\ & & \operatorname{Charakteristicaten Funktionen. & Weiche Aussagen sind korrekt? \end{array}$
$\int (ax+b)^n \mathrm{d}x$	$\frac{1}{a(n+1)}(ax+b)^{n+1}$	$ \hline \hline Sei f: [-1, 1]^k \backslash \{0\} \mapsto \mathbb{R} \text{ stetig, damn ist } f \text{ beschränkt} \\ \hline \hline Sei X \subseteq \mathbb{R}^n \text{ offee und } f, g: X \mapsto \mathbb{R}^n, \text{ Wetche Aussagen stated korrekts?} \\ \hline B \text{ fails } f \in C^2 \text{ and } X \text{ ist, dam ist } f \text{ and } X^2 \text{ and } x an$	$\begin{array}{l} @ \ \chi_{A \cap B} = \chi_A \cdot \chi_B \\ & \square \ \chi_{A \cup B} = \chi_A + \chi_B \\ @ \ \chi_{A \cup B} = \chi_A - \chi_B \text{ fails } B \subseteq A \\ & \square \ \chi_A \leq \chi_B \text{ fails } B \subseteq A \end{array}$
$\int x(ax+b)^n \mathrm{d}x$	$\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$	 X Sei f = (f₁,, f_m), wobei f_i Polynome sind und g ist C^k, daan ist f/g C^k and X Sei f C^k mit k ∈ N, daan gilt im Allgemeinen ∂_{xy}f = ∂_{yy}f. 	$\label{eq:starting} \begin{array}{ c c c c c } \hline & X_{A\cup B} = X_A + X_B - X_A \cdot X_B \\ \hline \hline & Sei \mathbb{R} = [a, b] \times [c, d] \subseteq \mathbb{R}^2, B \subseteq A \subseteq R \text{ und } f: R \mapsto \mathbb{R} \text{ beschränkt.} \\ \hline & Welch Aussagar sind korrekt? \\ \hline & B & die Funktions g(x, y) = c^* \text{ auf } R \text{ ist integriserbar} \end{array}$
$\int (ax^p + b)^n x^{p-1} \mathrm{d}x$	$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$	Set $f : \mathbb{R}^n \to \mathbb{R}$ eine \mathbb{C}^n Abhildung mit $k \ge 2$. Weiche Anssagen sind horrekk? der Gradient $\nabla(g)$ ist eine $n \ge n$ Matrix $\overline{\mathbb{R}}$ $H_f(x)$ ist eine quadrathiche Matrix $\overline{\mathbb{R}}$ $H_f(x)$ ist symmetrisch	 B fails f positiv und integrierbar auf A ist, dann glit f_A(x, y) w(x, y) ≥ 0 □ fails f auf B und A integrierbar ist, dann f_B f(x, y)d(x, y) ≤ f_A(x, y)d(x, y) B es glit f_A(x, y, a(x, y) d(x, x)) − f_B d(x, y)
$\int (ax^p + b)^{-1} x^{p-1} \mathrm{d}x$	$\frac{1}{ap}\ln ax^p+b $		Sei $\varphi : D \rightarrow \mathbb{R}^2$. Welche Aussagen sind korrekt? Sei für $D = [-2, 2]$ und φ Lipschitz, ist Bild $\varphi[0, 1]$ eine Nullmenge die Menge $\{(x, e^*) x \in [0, 1]\} \subseteq [0, 1]^2$ ist keine Nullmenge
$\int rac{ax+b}{cx+d} \; \mathrm{d}x$	$\frac{ax}{c} - \frac{ad-bc}{c^2} \ln cx+d $	 g besitzt keine Extremalstelle g besitzt mindestens zwei Extremalstellen die Stelle zu jst eine kolale Minimalstelle genau dann wenn für jedes > 0 mit C(x, b) ≤ X glit: [9] ≤ f(x_0), V ∉ C(x_0, b) 	
$\int \frac{1}{x^2 + a^2} \mathrm{d}x$	$\frac{1}{a} \arctan \frac{x}{a}$	$\label{eq:constraint} \begin{bmatrix} \Box & falls & d'(x_0) = 0 & tkn, st & f(x_0) & entweder \ ent & lokales Minimum & oder \\ Maximum & Link & tkn, st & lokales Minimum & oder \\ \Box & die Menge der kritischen Punkte von f ist immer endlich \\ \hline & die I. × t + R^* ein Vektorfeld und ; [a, b] + R^* eine parametrisierter \\ Kurve. Welche Massegn sind March 187 + R^* eine parametrisierter \\ \hline & Kurve. Welche Massegn sind March 187 + R^* eine parametrisierter \\ \hline & Kurve. Welche Massegn sind March 187 + R^* eine parametrisierter \\ \hline & Kurve. Welche Massegn sind March 187 + R^* eine parametrisierter \\ \hline & Kurve. Welche Massegn sind March 187 + R^* eine parametrisierter \\ \hline & Kurve. Welche Massegn sind March 187 + R^* eine parametrisierter \\ \hline & Kurve. Welche Massegn sind March 187 + R^* eine parametrisierter \\ \hline & Kurve. Welche Massegn sind March 187 + R^* eine parametrisierter \\ \hline & Kurve. Welche Massegn sind March 187 + R^* eine parametrisierter \\ \hline & Kurve. Welche March 187 + R^* eine parametrisierter \\ \hline & Kurve. Kurve Kurve Melche Massegn sind March 187 + R^* eine parametrisierter \\ \hline & Kurve. Kurve Kurve Kurve March 187 + R^* eine parametrisierter \\ \hline & Kurve Kur$	$ \begin{array}{l} \Box \ \int_{0}^{\infty} e^{-x^{2}} dx = \pi/2 \\ \Box \ dre \ {\rm Stat von \ Green besagt} \ \int_{A} F(s) ds = \int_{SA} (\partial_{x} f_{2} - \partial_{y} f_{1}) d(x,y) \\ \Box \ die \ {\rm Lacob} \ {\rm Matrix \ der \ Abbidumg} \ \Phi(a,b) = (a^{2},ab)^{\top} \ {\rm ist \ fir \ alle} \\ a,b \in {\rm Kinvertierbar} \end{array} $
$\int \frac{1}{x^2 - a^2} \mathrm{d}x$	$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right $	Kurve. Welche Aussagen sind korrekt? \boxtimes daw Wegintegral $f_{ij} f(s)ds$ is teine reelle Zahl \boxtimes falls $\gamma(t) = v$ für alle $t \in [a, b]$, dann gilt $f_{ij} f(s)ds = 0$ \boxtimes für $\omega(t) := \gamma(-t)$ gilt $\int_{\boxtimes} f(s)ds = -\int_{\gamma} f(s)ds$	2 die Vektoren v ₁ = (0, 1) ^T und v ₂ = (1, 0) ^T definieren keine positiv orientierte Baok von R ² def γ i R ² ≠ 0. Die Aussagen lim _{(x,y)→(0,0)} f(x, y) ist gleich bedeutend mit M ≤ 0 → 0 → −0 → den ((x, y)) = x → 0 ((x, y)) ≤ f.

 $\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x+f(x))$

 $\int \sqrt{a^2 + x^2} \, \mathrm{d}x$

Es existiert eine reellwertige Funktion $f C^2$, so dass $f'' + 27f' - \pi f = e^{x^2 - x}$ für alle $x \in \mathbb{R}$. Wahr
Es gibt eine eindeutige Lösung f für das ODE: $y^{\prime\prime}+(x^2+1)y^\prime+y=0,$ $(-1)=-1.$ Falsch
Für eine stetige Funktion f gilt: $\int_{[0,2]\times[0,3]} f(x,y) d(x,y) = 6 \int_0^1 \int_0^1 f(2x,3y) dx dy.$ Wahr
Wenn f_1,f_2 Lösungen der ODE $y''-xy'+y=\cos(x)$ sind, dann ist auch $f_1+2\cdot f_2$ eine Lösung. Falsch
Wenn $f C^2$ maximal am Punkt (x_0, y_0) ist, dann gilt $\partial_{x^2}^2 f = 0$. Falsch
Sei f ein Vektorfeld auf $\mathbb{R}^2 - \{0\}$ und $\int_{\gamma} f(s)ds = 0$ für alle geschlossenen Kurven γ , dann ist f konservativ. Wahr
Die Funktion $f:\mathbb{R}^2\mapsto\mathbb{R},(x,y)\mapsto xy $ ist differenzierbar im Punkt (0,0). Wahr
Aufgabe Betrachte die Funktion
$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$
$rac{\partial f}{\partial x}(0,0) ext{und} rac{\partial f}{\partial y}(0,0)$
aufgefasst werden. Da $f(x, 0) = 0$ und $f(0, y) = 0$ gilt für alle $x, y \in \mathbb{R}$, haben wir
haden wir $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial u}(0,0) = 0,$
insbesondere $df(0,0)=(0,0).$ Differenzierbarkeit bei $(0,0)$ bedeutet aber auch, dass der Grenzwert
$\lim_{(v,w) \to (0,0)} \frac{f(v,w) - f(0,0) - df(0,0)(v,w)^\top}{\ (v,w)\ }$
existiert. Aber $d\!f(0,0)$ ist die Nullabbildung, also erhalten wir
$\lim_{(v,w)\to(0,0)} \frac{f(v,w)-0}{\sqrt{v^2+w^2}} = \lim_{(v,w)\to(0,0)} \frac{vw}{v^2+w^2}$
Aber durch einsetzen von $(v, 0)$ und (v, w) ist leicht zu erkennen, dass dieser Grenzwert nicht existiert - Widerspruch zur Differenzierbarkeit von f bei $(0, 0)$.
Aufgabe Sei $f : \mathbb{R}^2 \to \mathbb{R}$ definiert wie folgt:
$f(x,y) = \begin{cases} xy \left(\frac{x^2 - y^2}{x^2 + y^2}\right), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$
Zeige, dass f stetig ist.
Für $(x, y) \neq 0$ ist $f(x, y)$ eine Verkettung stetiger Funktionen und somit stetig. Es bleibt also zu zeigen, dass f bei $(0, 0)$ stetig ist. Sei $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ mit $ (x, y) - (0, 0) = (x, y) = \sqrt{x^2 + y^2} < \delta$, wobei $\delta > 0$ in Kürze gewählt wird. Man beobachte, dass
$ f(x,y) - f(0,0) = f(x,y) = xy \cdot \frac{ x^2 - y^2 }{x^2 + y^2} \le xy \frac{x^2 + y^2}{x^2 + y^2} = xy .$
Aber $0\leq x^2,y^2<\delta$ und somit gilt $ xy <\delta.$ Wenn wir also ein beliebiges $\varepsilon>0$ wählen und dann $\delta=\varepsilon$ setzten, dann haben wir gezeigt, dass
$\ (x,y)-(0,0)\ <\delta \Longrightarrow f(x,y)-f(0,0) \leq xy <\varepsilon$

```
was Stetigkeit von f bei (0,0) beweist.
```

| $\overline{\text{Sei } f : \mathbb{R}^2 \mapsto \mathbb{R}}$. Die Aussagen $\lim_{(x,y)\mapsto(0,0)} f(x,y)$ ist gleich bedeutend mit:
$$\begin{split} & \text{iii:} \\ & \forall \delta > 0, \exists \epsilon > 0, \text{ so dass } ||\langle x, y\rangle|| < \epsilon \Rightarrow |f\langle x, y\rangle| < \delta \\ & \forall \delta > 0, \epsilon > 0, \text{ so dass } |f\langle x, y\rangle| < \epsilon \Rightarrow ||\langle x, y\rangle|| < \delta \\ & \Box \lim_{x \to 0} f\langle x, 0\rangle = \lim_{y \to 0} f(0, y) \end{split}$$