Computer Systems

Gnkgo, Computer Science, Bsc 5. Semester

Lecture 1

- Parallelism / Concurrency
- Failures / Fault-tolerance
 - Availability
 - Reliability
- $\bullet~$ Geography

Problems with Distributed Systems

- State replication!
 - C1, C2, C3, C4, ...
- 3 exactly once
- 1 correct order
- 2 exactly once

Lecture 2

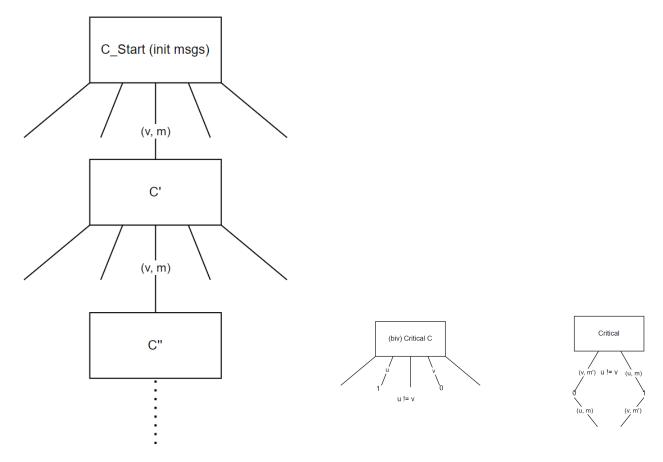
Consensus (Model)

Cannot be solved

- n nodes $(n \ge 2)$, input value $v_i = \{0, 1\}$
- f < n faulty (crash), n f correct
 - message passing
 - reliable
 - async
- $\bullet \ f \geq 1$

Consensus (Problem)

- agreement: all correct nodes \rightarrow some value
- termination: finite messages
- validity: decision is input of some node


Async

- init: send
- event: receive msg $(v, m) \rightarrow$ send

Configuration C

- \bullet = state of all nodes + msgs in transit
- C bivalent: both still possible
- C univalent: 0-valent, 1-valent
- C critical: bivalent, but all children univalent

Example: C_{start} (init msgs)

Lecture 3

 \bullet Consensus = by zantine agreement

- $f \operatorname{crash} \rightarrow$ "byzantine", $n f \operatorname{correct}$
- \bullet agreement
- $\bullet~{\rm termination}$
- validity

Validity

- any input?
- correct input $\rightarrow (f+1)$ -validity
- median validity (range of inputs)

Example: f = 1

async: event sync:

time	activity
1	send
2	receive
3	compute
1	send

Exercise Lecture 2

Challenges

- Messages can get lost
- Nodes may crash
- Messages can have varying delays

First Approaches

Server sends acknowledgment message.

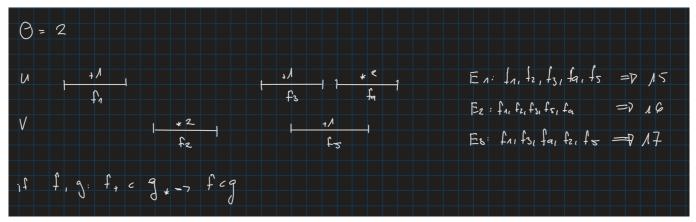
Eventual Consistency & Bitcoins

Paxos - Main Ideas

- 1. Tickets ("weak lock", expiration)
- 2. Require majority
- 3. Servers inform clients about their stored command

Lecture 4

Quorum


Majority QS:

$$S = \{X \subseteq \{v_1 ... v_m\} | |x| > \frac{m}{n}\}$$

Lecture 6

Sequential Execution S

 $\forall f, g \in S$: either f < g or g < f

Logical Clock

 C_u : operations \rightarrow "points in time"

Lampot Clock

$$c_u := 0$$

upon local op:

 $C_{:} = c_u + 1$

Computer Systems

Lecture 7

Time

Second \rightarrow International Atomic Time (TAI) \rightarrow Coordinated Universal Time (UTC) \rightarrow Time

Quiz Questions

• Does Paxos solve Consensus? No, termination is not guaranteed.