ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Formal Methods and Functional Programming

Formal Methods and Functional Programming

Gnkgo, Informatik B. Sc. 4. Semester

Spring Semester 2023 1

ETH

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Formal Methods and Functional Programming
Contents

I_Haskell 2

(LT Input/Output|. 2

[[27 Syntax for TO Type] o o e 2

12 Syntax Tree] 2

3 Foldr/Fold 3

BI _TOIdil. .« o o 3

4 Currying and Uncurrying| 3

6_CYPI 3

|6 nm-conversion| 4

7 IMP! 4

[(.1 Proof Structurel e 5

[7.1.1 Free Variables / Arithmetic Expression| 5

[7.1.27 Boolean EXPression] ovovv it i 5

LI Trees. . . o o o e e 5

B Fmdl : | 6

8.1 Min, Max (continued)| 6

8.2 SWaPD|. . . . o e e e e e s 6

B3 A2 | 6

8.4 Remainder]. e e 6

8.5 N 7

8.6 N =qg-DHr| . . . e e 7

19 Liveness and Safety| 7

Spring Semester 2023 1

w

'S

o

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Formal Methods and Functional Programming

Contents

1

1.1

Haskell

Input/Output

Java code:

void f(String out) {

String inpl = Console.readLine();
String inp2 Console.readLine () ;
if (inp2.equals(inpl)) System.out.println(out);

Listing 1: Java Code

How to convert to Haskell:

f

String -> I0 ()

f out = do
inpl <- getLine

inp2 <- getLine
if inp2 == inpl

then putStrLn out
else return ()

1.2

Listing 2: Haskell Code

Syntax for IO type

The syntax for the 10 type includes:

2

The do block sequences side effects.

<- extracts values from 10.

return wraps values in 10O.

show converts values to Strings.

read converts Strings to values (Always specify the desired type!).

For a-equivalence, no variables can be free.

Syntax Tree

The syntax tree rules include:

A binds stronger than V and stronger than —.
— associates to the right; A and V associate to the left.
Negation binds stronger than binary operators.

Quantifiers extend to the right as far as possible.

Proof Rule for Induction Step:

Spring Semester 2023 2

10

11

12

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Formal Methods and Functional Programming

I'EPln— 0] T'EVm: Nat. Pln—m|— Pln—m+1]
T'FVn: Nat.P

(m not free in P)

Figure 1: Induction Step Tree

3 Foldr/Foldl
3.1 Foldr

The easiest way to understand foldr is to rewrite the list as a series of cons operations.

[1,2,3,4,5] => 1:(2:(3:(4:(5:[1)))M

Listing 3: Haskell Code

Now what foldr f x does is that it replaces each : with £ in infix form and [] with x and evaluates the result.
For example:

sum [1,2,3] = foldr (+) 0 [1,2,3]

Listing 4: Haskell Code

[1,2,3] === 1:(2:(3:[1))
So,

sum [1,2,3] === 1+(2+(3+0)) = 6

Listing 5: Haskell Code

4 Currying and Uncurrying
Currying is the process of transforming a function that takes multiple arguments in a tuple as its argument into a

function that takes a single argument and returns another function that accepts further arguments one by one. You
can convert between curried and uncurried forms using the Prelude functions curry and uncurry.

5 CYP

Proof by induction on List xs generalizing zs:

Case []
For fixed \texttt{zs}
Show: \texttt{rev [] ++ zs .=. qrev [] zs}

Case y:ys
Fix \texttt{y, ys}
Assume
IH: forall \texttt{zs: rev ys ++ zs .=. qrev ys zs}
Then for fixed \texttt{zs}
Show: \texttt{rev (y:ys) ++ zs .=. qrev (y:ys) zs}

QED

Listing 6: Haskell Code

Spring Semester 2023 3

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Formal Methods and Functional Programming

6 n-conversion

The following two terms are equivalent under n-conversion:

r — fxrand f

Converting from left to right is nm-contraction, and converting from right to left is n-expansion. n-conversion is
sometimes useful to simplify expressions. Example: Function parity takes a list of Integers and transforms it into a
list of 0/1s.

parity xs = map elemPar xs where elemPar x = mod x

Listing 7: Haskell Code

General Procedure of foldr and foldl

1. Identify recursive, dynamic, and static arguments.

foldl f z (x:xs) = foldl f (f z x) xs

Listing 8: Haskell Code

2. Write an auxiliary function that has the recursive, then the dynamic arguments. Static arguments can still occur
freely (and will come from the final context).

aux [l z = z
aux (x:xs) z = aux xs (f z x)

Listing 9: Haskell Code

3. Write the dynamic arguments as lambdas.

aux [= \z -> z
aux (x:xs) = \z -> aux xs (f z x)

Listing 10: Haskell Code

4. Rewrite aux in terms of foldr. x and aux xs become arguments of the function for the recursive case.

aux = foldr (\x rec -> \z -> rec (f z x)) (\z -> z)

Listing 11: Haskell Code

5. Express the original function in terms of aux (reorder the dynamic and recursive arguments, if needed).

foldl £f z xs = aux Xxs z

Listing 12: Haskell Code

6. Replace aux with its implementation.

foldl f z xs = foldr (\x rec z -> rec (f z x)) (\z -> z) xXs z

Listing 13: Haskell Code

7 IMP

Remember the following;:

Spring Semester 2023 4

ETH

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Formal Methods and Functional Programming

Substitution “_[x — e]" replaces each free occurrence of variable x by e

o Arithmetic expressions

(e1 op &)[x+~ e]
n[x ~e]

y[x el

(e1[x = €] op ex[x = e])
n

e ifx=y

y otherwise

@ Boolean expressions

(e1 op &)[x > €]
(not b)[x ~ e]

(b1 or bo)[x ~ €]
(b1 and by)[x > €]

(exlx €] op ealx e])
not (b[x ~ e])

= (bi[x = €] or by[x — e])
= (bi[x > e] and by[x + e])

o We will use the following substitution lemma (see exercises for proof):

Bl[b[x > e]llo < Blb]o[x » Allelo])

Figure 2: Substitution Rule

Arithmetic expressions

FV(e1 op &) =FVW(er)uFV(e)
FV(n) =7
FW(x) ={x}
Boolean expressions
FV(e1 op &) =FV(er)u FV(e2)
FV(not b) = FV(b)
FV(b; or by) = FV(by) U FV(by)
FV(b, and by) = FV(b1) U FV(by)
Statements
FV(skip) =g
FW(x:=e) ={x}uFV(e)
FV(s1;52) = FV(s)u FV(sy)
FV(if b then s; else s, end) = FV(b)uU FV(s1) U FV(sy)
FV(while b do s end) = FV(b)u FV(s)

Figure 3: Free Variable

7.1 Proof Structure
7.1.1 Free Variables / Arithmetic Expression

Let z,y be arbitrary. Use strong structural induction on e. Thus, we have to prove P(e) for some arbitrary arithmetic
expression e and assume Ve C e, P(e¢”) as our induction hypothesis. - Case 1: ¢ = n for some numerical value n. -
Case 2: e = y for some variable y. - Case 3: e = e; op ey for some arithmetic expression eq, es and some arithmetic
operator op.

7.1.2 Boolean Expression

- Case 1: b = by or by for some boolean expressions by, by. - Case 2: b = by and by for some boolean expressions
b1,by. - Case 3: b = not b for some boolean expression b’. - Case 4: b = e; op ey for some arithmetic expression
e1, €2 and some arithmetic operator op.

7.1.3 Trees

R[T] = VT,P,Q,b,s... toot(T) = ... = ... We want to prove VT.R(T) by strong induction over the shape of T.
Assume VT" C T.R[T']. Assume LHS holds. We do a case distinction on the last rule applied in T

Here goes the proof

\ T1 /

Spring Semester 2023 b

ETH

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Formal Methods and Functional Programming

Since T1 C T, and the root has the same statement, we can apply the .LH. We instantiate P, (@, ...

respectively. Since LHS holds, we know 37" s.t. root(T”) =

8 Find Invariants

8.1 Min, Max (continued)

i|while (x < y) {
2 t = x5

3 X = y;

4 y = ¢t

5|}

Listing 14: Haskell Code

{12 = max(X,Y)}
Invariant: {max(z,y) = max(X,Y)}
Variant: y —x =72

8.2 Swap

Let x >0 and z = X.
ila = x;

2y = 0;

siwhile (a \neq 0) {
4 y =y + 1;

5 a = a - 1;

6| ¥

Listing 15: Haskell Code

{} y = X} Invariant: {a +y = X Aa > 0} Variant: a

8.3 A
{a=ANA>0An=NAN >0}
11k = 0;

olr 1= a;

slwhile (k < n) {

4 k := k + 1;

5 r := r \cdot r

o }

Listing 16: Haskell Code

{Lr=A2"} Invariant: {a=AAA>0An=NAN >0Ar =A% Ak < N} Variant:

8.4 Remainder

{N>0AD>0Ad=DAr=NAg=0}

1|while (r \geq 0) {
2 r :=r - d;
3 q :=q + 1;

Spring Semester 2023

as P',Q, ...

ETH

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Formal Methods and Functional Programming
a| }
silr = 1r + d;
6/q = q - 1;

Listing 17: Haskell Code

{JN=¢-D4+rAr>0Ar <D} Invariant: {N=q-d+rAd=DAD >0Ar+d >0} Variant: r = Z

8.5 NK
{k>1ANk=KAn>1An=N}
i == O;

2lr 1= 1;

slwhile (i < k) {

4 i =1 + 1;

5 r := r \cdot n;

6| ¥

Listing 18: Haskell Code

{{ r = NE} Invariant: {k=K An=NAr=n'Ai <k} Variant: k —i=V

86 N=q-D+r
{N>0AD>0ANd=DAr=NAqg=0}

1|while (r \geq 0) {
2 r := r - d;

3 qQ :=q + 1;

a| }

slr = r + d;

6lq = q - 1;

Listing 19: Haskell Code

Use the loop invariant in the invariant. Use post-condition in the loop invariant. Check if you can already conclude

with the invariant your post-condition.

9 Liveness and Safety

Liveness
e Something good will happen eventually.
e If the good thing has not happened yet, it could happen in the future.
e A liveness property does not rule out any prefix.
e Every finite prefix can be extended to an infinite sequence that is in P.
e Liveness properties are violated in infinite time.

Safety
e Something bad is never allowed to happen (and can’t be fixed).

e Safety properties are violated in finite time and cannot be repaired.

Spring Semester 2023

	Haskell
	Input/Output
	Syntax for IO type

	Syntax Tree
	Foldr/Foldl
	Foldr

	Currying and Uncurrying
	CYP
	-conversion
	IMP
	Proof Structure
	Free Variables / Arithmetic Expression
	Boolean Expression
	Trees

	Find Invariants
	Min, Max (continued)
	Swap
	A2N
	Remainder
	NK
	N = q D + r

	Liveness and Safety

