Model Error

Empirical Risk $\hat{R}_D(f) = \frac{1}{n} \sum \ell(y, f(x))$ **Population Risk** $R(f) = \mathbb{E}_{x,y \sim p}[\ell(y, f(x))]$ It holds that $\mathbb{E}_D[\hat{R}_D(\hat{f})] \leq R(\hat{f})$. We call $R(\hat{f})$ the generalization error. **Bias Variance Tradeoff:** Pred. error = $Bias^2$ + Variance + Noise $\mathbb{E}_D[R(\hat{f})] = \mathbb{E}_x[f^*(x) - \mathbb{E}_D[\hat{f}_D(x)]]^2$

 $+\mathbb{E}_{x}[\mathbb{E}_{D}[(\hat{f}_{D}(x)-\mathbb{E}_{D}[\hat{f}_{D}(x)])^{2}]]+\sigma$

Bias: how close \hat{f} can get to f^*

Variance: how much \hat{f} changes with D Regression

Equared loss (convex,
$$\mathcal{O}(n^2d) d = \text{dim. feat.}$$
)

$$\frac{1}{n} \sum (y_i - f(x_i))^2 = \frac{1}{n} ||y - Xw||_2^2$$

$$\nabla_w L(w) = 2X^\top (Xw - y)$$
Evolution: $\hat{w} = (X^\top X)^{-1} X^\top y$

Solution: $\hat{w} = (X^{\dagger}X)^{-1}X^{\dagger}y$

Regularization

Lasso Regression (sparse, Laplac. prior, i.o.i) $\operatorname{argmin}_{||y} - \Phi w||_{2}^{2} + \lambda ||w||_{1}$ $w \in \mathbb{R}^d$ Ridge Regression (convex, Gauss. prior, i.o.i) $\operatorname{argmin} ||y - \Phi w||_2^2 + \lambda ||w||_2^2$ $w \in \mathbb{R}^d$ $\nabla_{w}L(w) = 2X^{\top}(Xw - y) + 2\lambda w$ Solution: $\hat{w} = (X^{\top}X + \lambda I)^{-1}X^{\top}y$ large $\lambda \Rightarrow$ larger bias but smaller variance

Cross-Validation

• For all folds $i = 1, \dots, k$: - Train \hat{f}_i on $D' - D'_i$ - Val. error $R_i = \frac{1}{|D|} \sum \ell(\hat{f}_i(x), y)$ • Compute CV error $\frac{1}{k} \sum_{i=1}^{k} R_i$ • Pick model with lowest CV error Gradient Descent, i.o.i Converges only for convex case. $\mathcal{O}(n * k * d)$ $w^{t+1} = w^t - \eta_t \cdot \nabla \ell(w^t)$ For linear regression: $||w^{t} - w^{*}||_{2} \leq ||I - \eta X^{\top} X||_{op}^{t}||w^{0} - w^{*}||_{2}$ $\rho = ||I - \eta X^{\top} X||_{op}^{t} \text{ conv. speed for const. } \eta.$ Opt. fixed $\eta = \frac{2}{\lambda_{\min} + \lambda_{\max}}$ and max. $\eta \le \frac{2}{\lambda_{\max}}$. **Momentum**: $w^{t+1} = w^t + \gamma \Delta w^{t-1} - \eta_t \nabla \ell(w^t)$ Learning rate η_t guarantees convergence if $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$ Classification ntinuous

Let **One loss** not convex of con

$$\ell_{0-1}(\hat{f}(x), y) = \mathbb{I}_{y \neq \text{sgn}\hat{f}(x)}$$

Logistic loss $\log(1 + e^{-y\hat{f}(x)})$
 $\nabla \ell(\hat{f}(x), y) = \frac{-y_i x_i}{1 + e^{y_i \hat{f}(x)}}$

Hinge loss $\max(0, 1 - y\hat{f}(x))$ Softmax $p(1|x) = \frac{1}{1+e^{-\hat{f}(x)}}, p(-1|x) = \frac{1}{1+e^{\hat{f}(x)}}$ Multi-Class $\hat{p}_k = e^{\hat{f}_k(x)} / \sum_{i=1}^K e^{\hat{f}_i(x)}$ **Linear Classifiers**

 $f(x) = w^{\top}x$, the decision boundary f(x) = 0. If data is lin. sep., grad. desc. converges to **Maximum-Margin Solution**:

 $w_{MM} = \operatorname{argmax} \operatorname{margin}(w)$ with $||w||_2 = 1$ Where margin(w) = min_i $y_i w^{\top} x_i$. Support Vector Machines i.o.i Hard SVM

$$w = \min_{w} ||w||_{2} \text{ s.t. } \forall i \ y_{i}w^{\top}x_{i} \ge 1$$

Soft SVM allow "slack" in the constraints
$$\hat{w} = \min_{w,\xi} \frac{1}{2} ||w||_{2}^{2} + \lambda \sum_{i=1}^{n} \underbrace{\max(0, 1 - y_{i}w^{\top}x_{i})}_{i=1}$$

Metrics

Choose +1 as the more important class.

True Class error₁/FPR Prediction f(w)=-1 f(w)=+1 error₂/FNR FP $\overline{TP + FN}$ ΤP Precision $\frac{11}{TP + FP}$ TPR / Recall : $\frac{1P}{TP + FN}$ AUROC: Plot TPR vs. FPR and compare different ROC's with area under the curve. **F1-Score**: $\frac{2TP}{2TP + FP + FN}$, Accuracy : $\frac{TP + TN}{P + N}$ Goal: large recall and small FPR. Kernels

Parameterize:
$$w = \Phi^{\top} \alpha$$
, $K = \Phi\Phi^{\top}$
A kernel is valid if *K* is sym.: $k(x,z) = k(z,x)$
and psd: $z^{\top}Kz \ge 0$
lin.: $k(x,z) = x^{\top}z$, rbf: $k(x,z) = \exp(-\frac{||x-z||_{\alpha}}{\tau})$
poly.: $k(x,z) = (x^{\top}z+1)^m \mathcal{O}(n^2 * d)$
 $\alpha = 1 \Rightarrow$ laplacian kernel
 $\alpha = 2 \Rightarrow$ gaussian kernel
Kernel composition rules
 $k = k_1 + k_2$, $k = k_1 \cdot k_2 \quad \forall c > 0$. $k = c \cdot k_1$,
 $\forall f$ convex. $k = f(k_1)$, holds for polynoms with
pos. coefficients or exp function.
 $\forall f. k(x,y) = f(x)k_1(x,y)f(y)$
Mercers Theorem: Valid kernels can be de-
composed into a lin. comb. of inner products.
Kern. Ridge Reg. $\frac{1}{n}||y - K\alpha||_2^2 + \lambda \alpha^{\top}K\alpha$
 $\mathcal{O}(d^m)$ for large d, $\mathcal{O}(m^d)$ for large m
 $int k$ closest to $x \to x_{i_1}, ..., x_{i_k}$
• Output the majority vote of labels
Neural Networks, d.o.i

w are the weights and $\varphi : \mathbb{R} \to \mathbb{R}$ is a nonlinear Find k by negligible loss decrease or reg. activation function: $\phi(x, w) = \phi(w^{\dagger}x)$

ReLU: max(0, z), **Tanh:** $\frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$ Sigmoid: $\frac{1}{1+\exp(-z)}$

Universal Approximation Theorem: We can approximate any arbitrary smooth target function, with 1+ layer with sufficient width. **Forward Propagation**

Input: $v^{(0)} = [x; 1]$ Output: $f = W^{(L)}v^{(L-1)}$ Hidden: $z^{(l)} = W^{(l)}v^{(l-1)}, v^{(l)} = [\varphi(z^{(l)}); 1]$

Backpropagation

Non-convex optimization problem:

$$\left(\nabla_{W^{(L)}} \ell \right)^{T} = \frac{\partial \ell}{\partial W^{(L)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial W^{(L)}}$$

$$\left(\nabla_{W^{(L-1)}} \ell \right)^{T} = \frac{\partial \ell}{\partial W^{(L-1)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial W^{(L-1)}}$$

$$\left(\nabla_{W^{(L-2)}} \ell \right)^{T} = \frac{\partial \ell}{\partial W^{(L-2)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial W^{(L-2)}}$$

Only compute the gradient. Rand. init. weights by distr. assumption for φ . (2/ n_{in} for $\overline{\text{TN} + \text{FP}}$ ReLu and $1/n_{in}$ or $1/(n_{in} + n_{out})$ for Tanh)

Overfitting

Regularization; Early Stopping; Dropout: ignore hidden units with prob. p, after training use all units and scale weights by p; **Batch Normalization**: normalize the input data (mean 0, variance 1) in each layer

CNN i.o.i $\varphi(W * v^{(l)})$

For each channel there is a separate filter. Convolution

= channel F = filterSize inputSize = I $dding = P \ stride = S$

Output size
$$1 = \frac{I + 2P - K}{S} + 1$$

Output dimension = $l \times l \times m$

Inputs = W * H * D * C * N

Trainable parameters = F * F * C * # filtersnsupervised Learning

Means Clustering, d.o.i

ptimization Goal (non-convex):

 $\hat{R}(\mu) = \sum_{i=1}^{n} \min_{i \in \{1, \dots, k\}} ||x_i - \mu_i||_2^2$

oyd's heuristics: Init.cluster centers $\mu^{(0)}$:

- Assign points to closest center
- Update μ_i as mean of assigned points onverges in exponential time. tialize with k-Means++:
 - Random data point $\mu_1 = x_i$
 - given $\mu_{1:i}$ pick $\mu_{i+1} = x_i$ where p(i) = mators. However, it can overfit. $\frac{1}{2} \min_{l \in \{1, \dots, i\}} ||x_i - \mu_l||_2^2$

onverges expectation $\mathcal{O}(\log k) * \text{opt.solution}$.

Principal Component Analysis

Optimization goal: argmin $\sum_{i=1}^{n} ||x_i - z_i w||_2^2$ $||w||_2 = 1, z$

The optimal solution is given by $z_i = w^{\top} x_i$. Substituting gives us:

$$\hat{w} = \operatorname{argmax}_{||w||_2=1} w^{\top} \Sigma w$$

Where $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$ is the empirical covariance. Closed form solution given by the principal eigenvector of Σ , i.e. $w = v_1$ for $\lambda_1 \ge \cdots \ge$ $\lambda_d \geq 0$: $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^{\top}$

For k > 1 we have to change the normalization to $W^{\top}W = I$ then we just take the first k principal eigenvectors so that $W = [v_1, \ldots, v_k]$. PCA through SVD. i.o.i

- The first k col of V where X = USV^T.
 linear dimension reduction method
 first principal component eigenvector of
- data covariance matrix with largest eigenvalue
- covariance matrix is symmetric \rightarrow all principal components are mutually orthogonal

Kernel PCA

 $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} = X^{\top} X \Rightarrow$ kernel trick: $\hat{\alpha} = \operatorname{argmax}_{\alpha} \frac{\alpha^{\top} K^{\top} K \alpha}{\alpha^{\top} K \alpha}$ Closed form solution: $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i \quad K = \sum_{i=1}^n \lambda_i v_i v_i^{\top}, \lambda_1 \ge \cdots \ge 0$ A point x is projected as: $z_i = \sum_{i=1}^n \alpha_i^{(i)} k(x_i, x)$

Autoencoders

We want to minimize $\frac{1}{n}\sum_{i=1}^{n} ||x_i - \hat{x}_i||_2^2$. $\hat{x} = f_{dec}(f_{enc}(x, \theta_{enc}); \theta_{dec})$

Assume that data is generated iid. by some p(x,y). We want to find $f: X \mapsto Y$ that minimizes the **population risk**.

Opt. Predictor for the Squared Loss

f minimizing the population risk:

 $f^*(x) = \mathbb{E}[y \mid X = x] = \int y \cdot p(y \mid x) dy$ Estimate $\hat{p}(y \mid x)$ with MLE:

$$\theta^{T} = \underset{\theta}{\operatorname{argmin}} p(y_{1}, ..., y_{n} \mid x_{1}, ..., x_{n}, \theta)$$
$$= \underset{\theta}{\operatorname{argmin}} - \sum_{i=1}^{n} \log p(y_{i} \mid x, \theta)$$

The MLE for linear l = 1 gression is unbiased and • Add seq μ_2, \ldots, μ_k rand., with prob: has minimum variance among all unbiased esti-

Ex. Conditional Linear Gaussian

Assume Gaussian noise $y = f(x) + \varepsilon$ with $\varepsilon \sim$ $\mathcal{N}(0, \sigma^2)$ and $f(x) = w^\top x$: $\hat{p}(\mathbf{v} \mid \mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{v}; \mathbf{w}^{\top} \mathbf{x}, \boldsymbol{\sigma}^2)$

The optimal \hat{w} can be found using MLE: $\hat{w} = \operatorname{argmax} p(y \mid x, \theta) = \operatorname{argmin} \sum (y_i - w^{\top} x_i)^2$

Maximum a Posteriori Estimate

Introduce bias to reduce variance. The small weight assumption is a Gaussian prior $w_i \sim$ $\mathcal{N}(0,\beta^2)$. The posterior distribution of w is given by:

$$p(w \mid x, y) = \frac{p(w) \cdot p(y \mid x, w)}{p(y \mid x)} = p(w) \cdot (y \mid x, w)$$

Now we want to find the MAP for *w*:

$$\begin{aligned} & \mathcal{V} = \operatorname{argmax}_{w} p(w \mid x, y) \\ & = \operatorname{argmin}_{w} - \log \frac{p(w) \cdot p(y \mid x, w)}{p(y \mid x)} \\ & = \operatorname{argmin}_{w} \frac{\sigma^{2}}{\beta^{2}} ||w||_{2}^{2} + \sum_{i=1}^{n} (y_{i} - w^{\top} x_{i})^{2} \end{aligned}$$

If $P_{\theta} = Unif(\Theta)$: $\theta_{b_{\text{MAP}}} = b_{\theta_{\text{MLE}}}$

Statistical Models for Classification

f minimizing the population risk:

$$f^*(x) = \operatorname{argmax}_{\hat{y}} p(\hat{y} \mid x)$$

This is called the Bayes' optimal predictor for MLE is prone to overfitting. Avoid this by conditional probability is:

$$p(y \mid x, w) \sim \text{Ber}(y; \sigma(w \mid x))$$

here $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function.

Using MLE we get:

W

$$\hat{w} = \operatorname{argmin} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^{\top} x_i))$$

Which is the logistic loss. Instead of MLE we can estimate MAP, e.g. with a Gaussian prior:

$$\hat{w} = \operatorname*{argmin}_{w} \lambda ||w||_{2}^{2} + \sum_{i=1}^{n} \log(1 + e^{-y_{i}w^{\top}x_{i}})$$

Bayesian Decision Theory

 $C: Y \times A \mapsto \mathbb{R}$, pick the action with the maximum expected utility.

$$a^* = \operatorname{argmin}_{a \in A} \mathbb{E}_{y}[C(y, a) \mid x]$$

Can be used for asymetric costs or abstention. Generative Modeling

Aim to estimate
$$p(x,y)$$
 for complex situations
using Bayes' rule: $p(x,y) = p(x|y) \cdot p(y)$

Naive Bayes Model

GM for classification tasks. Assuming for a class label, each feature is independent. This helps estimating $p(x \mid y) = \prod_{i=1}^{d} p(x_i \mid y_i)$.

Gaussian Naive Bayes Classifier

Naive Bayes Model with Gaussian's features. Estimate the parameters via MLE:

MLE for class prior:
$$p(y) = \hat{p}_y = \frac{\text{Count}(Y=y)}{n}$$

MLE for feature distribution:

$$P(x_i|y) = \frac{Count(X_i = x_i, Y = y)}{Count(Y = y)}$$

Predictions are made by: $y = \operatorname{argmax} p(\hat{y} \mid x) = \operatorname{argmax} p(\hat{y}) \cdot [p(x_i \mid \hat{y})]$

Equivalent to decision rule for bin. class.: $y = \operatorname{sgn}\left(\log \frac{p(Y=+1 \mid x)}{p(Y=-1 \mid x)}\right)$

Where f(x) is called the discriminant function. If the conditional independence assumption is violated, the classifier can be overconfident.

Gaussian Bayes Classifier

No independence assumption, model the features with a multivariant Gaussian $\mathcal{N}(x; \boldsymbol{\mu}_{v}, \boldsymbol{\Sigma}_{v})$:

$$\mu_{y} = \frac{1}{\operatorname{Count}(Y=y)} \sum_{j \mid y_{j}=y} x_{j}$$

$$\Sigma_{y} = \frac{1}{\operatorname{Count}(Y=y)} \sum_{j \mid y_{j}=y} (x_{j} - \hat{\mu}_{y}) (x_{j} - \hat{\mu}_{y})^{\top}$$

This is also called the quadratic discriminant analysis (QDA). LDA: $\Sigma_+ = \Sigma_-$, Fisher LDA: $p(y) = \frac{1}{2}$, Outlier detection: $p(x) \le \tau$.

Avoiding Overfitting

the 0-1 loss. Assuming iid. Bernoulli noise, the restricting model class (fewer parameters, e.g. GNB) or using priors (restrict param. values).

Generative vs. Discriminative **Discriminative models:**

p(y|x), can't detect outliers, more robust Generative models:

p(x,y), can be more powerful (dectect outliers, GMMs for Density Estimation missing values) if assumptions are met, are typ- Can be used for anomaly detection or data imically less robust against outliers

Gaussian Mixture Model

Assume that data is generated from a convex-combination of Gaussian distributions: FP rate. Use \dot{ROC} curve as evaluation criterion and optimize using CV to find τ . combination of Gaussian distributions: $p(x|\theta) = p(x|\mu, \Sigma, w) = \sum_{j=1}^{k} w_j \mathcal{N}(x; \mu_j, \Sigma_j)$ Given $p(y \mid x)$, a set of actions A and a cost We don't have labels and want to cluster this **E-Step**: Take the expected value over latent data. The problem is to estimate the param. for variables z to generate likelihood function Q:

the Gaussian distributions.

$$\operatorname{argmin}_{\theta} - \sum_{i=1}^{n} \log \sum_{j=1}^{k} w_j \cdot \mathcal{N}(x_i \mid \mu_j, \Sigma_j)$$

This is a non-convex objective. Similar to train-

ing a GBC without labels. Start with guess for our parameters, predict the unknown labels and

then impute the missing data. Now we can get M-Step: Compute MLE / Maximize: a closed form update.

E-Step: predict the most likely class for each We have monotonic convergence, each EMdata point:

$$z_i^{(t)} = \underset{z}{\operatorname{argmax}} p(z \mid x_i, \theta^{(t-1)})$$

=
$$\underset{z}{\operatorname{argmax}} p(z \mid \theta^{(t-1)}) \cdot p(x_i \mid z, \theta^{(t-1)})$$

M-Step: compute MLE of $\theta^{(t)}$ as for GBC.

Problems: labels if the model is uncertain, tries

with Lloyd's heuristics. Soft-EM Algorithm, d.o.i

E-Step: calculate the cluster membership weights for each point $(w_j = \pi_j = p(Z_{\overline{i}} = j))$: $\gamma_{i}^{(t)}(x_{i}) = p(Z = i \mid D) =$ $\sum_k w_k \cdot p(x_i; \theta_{\iota}^{(t-1)})$

M-Step: compute MLE with closed form:

$$\hat{\Sigma}_{y} = \frac{1}{Count(\mathbf{X} - \mathbf{y})} \sum_{i} (\mathbf{x}_{i} - \hat{\mu}_{y}) (\mathbf{x}_{i} - \hat{\mu}_{y})^{T}$$

$$\hat{\Sigma}_{y} = \frac{1}{\text{Count}(\mathbf{Y} = \mathbf{y})} \sum_{i: y_{i} = y} (\mathbf{x}_{i} - \hat{\mu}_{y}) (\mathbf{x}_{i} - \hat{\mu}_{y})$$

Init. the weights as uniformly distributed, rand. or with k-Means++ and for variances use spherical init. or empirical covariance of the data. **Validus Derivatives**: Select k using cross-validation.

Degeneracy of GMMs

GMMs can overfit with limited data. Avoid this by add $v^2 I$ to variance, so it does not collapse (equiv. to a Wishart prior on the covariance matrix). Choose v by cross-validation.

Gaussian-Mixture Bayes Classifiers

Assume that $p(x \mid y)$ for each class can be modelled by a GMM.

$$p(x \mid y) = \sum_{i=1}^{k_y} w_i^{(y)} \mathcal{N}(x; \boldsymbol{\mu}_i^{(y)}, \boldsymbol{\Sigma})$$

Giving highly complex decision boundaries:

$$p(y \mid x) = \frac{1}{z} p(y) \sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)}, \Sigma)$$

putation. Detect outliers, by comparing the estimated density against τ . Allows to control the μ

General EM Algorithm

 $O(\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{(t-1)}) = \mathbb{E}_{\mathbf{z}}[\log n(\mathbf{X} \mid \mathbf{z} \mid \boldsymbol{\theta}) \mid \mathbf{X} \mid \boldsymbol{\theta}^{(t-1)}]$

$$= \sum_{i=1}^{n} \sum_{z_i=1}^{k} \gamma_{z_i}(x_i) \log p(x_i, z_i \mid \theta)$$

with $\gamma_z(x) = p(z \mid x, \theta^{(t-1)})$

$$\theta^{(t)} = \operatorname{argmax} Q(\theta; \theta^{(t-1)})$$

iteration increases the data likelihood. GANs

Learn f: "simple" distr. \mapsto non linear distr. Computing likelihood of the data becomes hard, therefore we need a different loss.

 $\min_{w_G} \max_{w_D} \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x, w_D)]$

$$+\mathbb{E}_{z\sim p_z}[\log(1-D(G(z,w_G),w_D))]$$

to extract too much inf. Works poorly if clus- Training requires finding a saddle point, always ters are overlapping. With uniform weights and converges to saddle point with if G, D have spherical covariances is equivalent to k-Means enough capacity. For a fixed G, the optimal dis-

criminator is:

$$D_G(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)}$$

The prob. of being fake is $1 - D_G$. Too powerful discriminator could lead to memorization of finite data. Other issues are oscillations/divergence or mode collapse.

$$G = \max_{w'_D} M(w_G, w'_D) - \min_{w'_G} M(w'_G, w_D)$$

Where $M(w_G, w_D)$ is the training objective.

D

$$\nabla_{x}x^{\top}A = A \quad \nabla_{x}a^{\top}x = \nabla_{x}x^{\top}a = a$$

$$\nabla_{x}b^{\top}Ax = A^{\top}b \quad \nabla_{x}x^{\top}x = 2x \quad \nabla_{x}x^{\top}Ax = 2Ax$$

$$\nabla_{w}||y - Xw||_{2}^{2} = 2X^{\top}(Xw - y)$$

Bayes Theorem:

$$p(y \mid x) = \frac{1}{p(x)} p(y) \cdot p(x \mid y)$$

Normal Distribution $p(x)$

Normal Distribution:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)^{p(x,y)}$$

Other Facts

$$\begin{aligned}
\text{Tr}(AB) &= \text{Tr}(BA), \text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \\
X &\in \mathbb{R}^{n \times d} : X^{-1} \to \mathcal{O}(d^3) X^\top X \to \mathcal{O}(nd^2), \\
\binom{n}{k} &= \frac{n!}{(n-k)!k!}, ||w^\top w||_2 = \sqrt{w^\top w} \\
\text{Cov}[X] &= \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^\top] = \\
\mathbb{E}[XX^\top] - E[X]E[X]^\top \\
p(z|x, \theta) &= \frac{p(x;z|\theta)}{p(x|\theta)} \\
\mathbb{E}[s \cdot s^\top] &= \mu \cdot \mu^\top + \Sigma = \Sigma \text{ where } s \text{ follows a mul-ivariate normal distribution with mean } \mu \text{ and} \\
\text{covariance matrix } \Sigma
\end{aligned}$$

$$p(x,y|\theta) = p(y|x,\theta) * p(x|\theta)$$

Convexity
0: $L(\lambda w + (1-\lambda)v) \le \lambda L(w) + (1-\lambda)L(v)$
1: $L(w) + \nabla L(w)^{\top}(v-w) \le L(v)$
2: Hessian $\nabla^2 L(w) \ge 0$ (psd)
• $\alpha f + \beta g, \alpha, \beta \ge 0$, convex if f, g convex

- $f \circ g$, convex if f convex and g affine or f non-decreasing and g convex
- $\max(f,g)$, convex if f,g convex