Model Error

Empirical Risk  Rp(f) = 1 ¥.4(y, f(x))
Population Risk R( )=E, yN,,[ (n, f(x))]
It holds that Ep[Rp(f)] < R(f). We call R(f)

the generalization error.
Bias Variance Tradeoff:
Pred. error = Bias? + Variance + Noise

Ep[R(f)] = E.[f*(x) — Ep|[/p(x)]]” ,
+E[Ep[(fp(x) —Ep[fp(x)])7]] + 0

Bias: how close f can get to f*

Variance: how much f changes with D

Regression

Squared loss (convex, & (n*d) d = dim. feat.)
1 - N2 = 1|y — 2
w2 = ()" = 5 lly —Xwll3
V,L(w)=2X"(Xw—y)

Solution: w = (X 'X)"1X Ty

Regularization

Lasso Regression (sparse, Laplac. prior, i.0.1)

argmin||y — |3+ A[[wl];
weRd
Ridge Regression (convex, Gauss. prior, i.0.1)
argmin|[y — ®wl[5 +A[|w|[3
weRd
VL(w) =2X"(Xw—y)+2Aw

Solution: w= (XX +A1)"'X Ty
large A = larger bias but smaller variance

Cross-Validation
e Forall foldsi=1,...,k:

— Train f; on D' — D)
— Val. error R; = ﬁxﬁ(ﬁ(x),y)
* Compute CV error 7 Zl 1 Ri

 Pick model with lowest CV error
Gradient Descent, i.0.i

Converges only for convex case. O (nxkx*d)
wl =w —n, - V(W)

For linear regression:
[Iw' = w2 < [1T=nX X[, |Iw°
= l1=nXTXI[,
Opt fixedn = y—— /lma and max. n <

*
—w'l2
conv speed for const n.

A’max

Learning rate 1) guarantees convergence if ¢ (gm) for large d, €(m

XM —“aHdenz <o
Classification .
Zero-One loss _ not convex or continuous

lo-1(f(x),y) = Hyzgsgnf(x)
Logistic loss  log(1+4 ¢ /)
VU(f(x),y) = —F

1+eif()

Hinge loss max(0,1—yf(x))
Softmax p(1|x) = map(_”x) =

Multi-Class  py = e/t /¥ K | e/i9)
Linear Classifiers

f(x) = w'x, the decision boundary f(x) =
sep., grad. desc. converges to

If data is lin.
Maximum-Margin Solution:

wmMm = argmax margin(w) with ||w||2
Where margin(w) = min; y;w " x;.
Support Vector Machines i.o.i
Hard SVM

W = min,, ||wl[> s.t Viyw x> 1

Soft SVM

1

14ef @

0.

=1

allow’ slack in the constraints

W= m1n§]|w||2+12max (0,1 —yw'x;)

Metrlcs hinge loss
Choose +1 as the more important class.
Trve Class error; / FPR
y=+4 -4
< .
81 error; /FNR  :
F %
:g ¥ F P Precision
¢ FN TPR / Recall :
UROC: Plo

ferent ROC’s with area under the curve.
. . +
F1-Score: TP+ FP+EN® Accuracy .
Goal: large recall and small FPR.
Kernels
Parameterize: w =® o, K = &P
A kernel is valid if K is sym.: k(x,z)
and psd: 72TKz>0

FP
TN + FP
FN
TP + FN
TP
TP + FP

P FN
I'PR vs. FPR and compare dif-

P+N

= k(z,x)

lin.: k(x,z) = x 'z, rbf: k(x,z) = CXP(—@)

poly.: k(x,z) = (x"z+1)" O(n®>*d)
o = 1 = laplacian kernel

o = 2 = gaussian kernel

Kernel composition rules

k=ki+ky, k=ki -k

pos. coefficients or exp function.

V. k(x,y) = f(0)ki (x,y) f(y)

Mercers Theorem: Valid kernels can

Ve >0.k=c ki,
Vf convex. k = f(ki), holds for polynoms with

be de-

composed into a lin. comb. of inner products.
Momentum: w'"! = w' 4+ yAw'~! — n,V/(w') Kern. Ridge Reg. i|[y—Ka|3+Aa Ka

) for large m

KNN Classification
* Pick k and distance metric d
* For given x, find among x1, ...,

k closest to x — x;,, ..., Xj,
* Qutput the majority vote of labels
Neural Networks, d.o.i

X, € D the

exp(z)—exp(—z)

ReLU: max(O z), Tanh: exp(d) Texp(=2)

Slngld H’TP()

Universal Approximation Theorem: We can
approximate any arbitrary smooth target func-
tion, with 1+ layer with sufficient width.
Forward Propagation
Input: v(¥ = [x;1]  Output: f = W (L)y(L-1)
Hidden: z() = wy(=1 y() = [o(z(0); 1]
Backpropagation
Non-convex optimization problem:
a¢  at of

Tawd T afaw®
ot at af aztv
AW (L-1) =?faz(L 10w -1
a¢  at af 8zt 9z

i) =305 = 37 5,079 3,075 gD
Only compute the gradient. Rand. init.
weights by distr. assumption for ¢. ( 2/n;, for
ReLu and 1/n;, or 1/(n, + nyy ) for Tanh)
Overfitting
Regularization; Early Stopping; Dropout:
ignore hidden units with prob. p, after train-
ing use all units and scale weights by p; Batch
Normalization: normalize the input data (mean -
0, variance 1) in each layer
CNN i.0.i o(W xv()
For each channel there is a separate filter.
Convolution
C = channel F = filterSize inputSize = I
padding = P stride = S

(VW”‘) ‘?)T

(VW(L—U f)T =

I1+2P—K
Output size 1 = % +1

Output dimension =/ X [ X m
Inputs =W xH+«DxCxN
Trainable parameters = F x F' x C x#filters
Unsupervised Learning

k-Means Clustering, d.o.i
Optimization Goal (non-convex):

R(p) =Y minjeq gy |l — w13
Lloyd’s heuristics: Init.cluster centers (%)

* Assign points to closest center

» Update u; as mean of assigned points
Converges in exponential time.

Initialize with k-Means++:
* Random data point tt; = x;

e Add seq Mo,...,ux rand., with prob:
given py.j pick pjp 1 = x; where p(i) =
smineqy gy [l — w3

Converges expectation &'(logk) * opt.solution.

w are the weights and ¢ : R — Ris anonlinear Find k by negligible loss decrease or reg.

activation function: & (x w) — o (w ' +)

Principal Component Analysis

Optimization goal: argmin Y, ||x; — z;w|[3
[wll2=1.z
The optimal solution is given by z; = w ' x;.

Substituting gives us:
W= argmaXHWH2 W Zw

Where X = Z 1 XiX; T is the empirical covari-
ance. Closed form solutlon given by the princi-
pal eigenvector of X, i.e. w=v; for A} > --- >
A >0: X = Zle Aiviv]

For k > 1 we have to change the normalization
to W W = I then we just take the first k princi-
pal eigenvectors so that W = [vy,...,w].

PCA through SVD, i.o.i

* The first k col of V where X = USV .
e linear dimension reduction method
* first principal component eigenvector of

data covariance matrix with largest eigen-

value o )
e covariance matrix is symmetric — all

principal components are mutually or-

thogonal
Kernel PCA
=1 YL (xix; =X "X = kernel trick:
0. = argmax, “afKI; “
Closed form solution:
a(’):ﬁvi K=Y"  hvv/ A >-->0

A point x is projected as: z; = }}_; Oc](. )k(xj,x)
Autoencoders
We want to minimize % Y i — &3

x= fdec (fenc (xa Genc); Gdec)
Lin.activation func. & square loss => PCA
Statistical Perspective
Assume that data is generated iid. by some
p(x,y). We want to find f : X — Y that mini-
mizes the population risk.
Opt. Predictor for the Squared Loss
Jf minimizing the population risk:

1) =Ely[X =x]= [y-p(y|x)dy
Estimate p(y | x) with MLE:
9*_argmaxp(y17 - ¥Vn ‘xlv Xn,e)

—argmm - Zlogp vi|x,0)

The MLE for linear regressmn is unbiased and
has minimum variance among all unbiased esti-
mators. However, it can overfit.

Ex. Conditional Linear Gaussian
Assume Gaussian noise y = f(x) 4 € with € ~

N (0,6%) and f(x) =w'

=W X.
v x.0)= A4 (v:w'x.c2)



The optimal W can be found using MLE:
= argmax p (| x,8) = argmln):(y, —wix)? ¥
MaX|mum a Posteriori Estlmate

Introduce bias to reduce variance. The small
weight assumptlon is a Gaussian prior w; ~

A (0,B%). The posterior distribution of w is
given by:
pw)-p(y|x,w)
pPwWI|X,y)= =pw)yixw
(v e3) = PELZEE = - (3 ew)

Now we want to find the MAP for w:
= argmax,, p(w | X,

= argmin,, — 10g W

= argmin,, Bz HWHz +X (i —

If Pg = Ul’lif( ) QbMAP = b@ML
Statistical Models for Classification
f minimizing the population risk:

J*(x) = argmax; p(9 | x)
This is called the Bayes’ optimal predictor for
the 0-1 loss. Assuming iid. Bernoulli noise, the
conditional probability is:

p(y | x, wl) ~ Ber(y;o(w'x))
Wl'lere o(z)= TFexp(—2) 18 the sigmoid function.
Usmg MLE we get:

= argmin 11y og(1+exp( =y 1))

Which is the logistic loss. Instead of MLE we
can estimate MAP, e.g. with a Gaussian prior:

34+ LE log(1+e ™)

w

Bayesian Decision Theory
Given p(y | x), a set of actions A and a cost
C:Y XA +— R, pick the action with the max-
imum expected utility.

a* = argmin, ., B, [C(y.a) | 2
Can be used for asymetric costs or abstention.
Generative Modeling
Aim to estimate p(x,y) for complex situations
using Bayes’ rule: p(x,y) = p(x]y) - p(v)
Naive Bayes Model
GM for classification tasks. Assuming for a
class label, each feature is independent. This
helps estimating p(x | y) = [T, p(xi | vi).
Gaussian Naive Bayes Classifier
Naive Bayes Model with Gaussian’s features.
Estimate the parameters via MLE:

wlx)?

MLE for class prior: p(y) = p, = COU%M
MLE for feature distribution:
Count(X; =x;,Y =)

Count(Y =y)

P(xily) =

QU

Predictions are made by:
y=agma p(3 ) = argmax p(5) [Tl |9

:l

Equlvalent to dec1s<10n r}zle for b1 ass.:

=sgn ( log o Y?_] ‘ )
Where f (x)is called the discriminant function.
If the conditional independence assumption is
violated, the classifier can be overconfident.
Gaussian Bayes Classifier

No independence assumption, model the

features with a multivariant Gaussian
(X;.uyaz’y)l:
Hy = Count(Y=y) Zj | yj=yXj
— 1 A~ A T
Ey ~ Count(Y=y) Zj [yj=y (xj - .uy)(xj - .’iy)

This is also called the quadratic discriminant
analysis (QDA). LDA: £, = X_, Fisher LDA:
p(y) = 1, Outlier detection: p(x) < T
Avoiding Overfitting

MLE is prone to overfitting. Avoid this by
restricting model class (fewer parameters, e.g.
GNB) or using priors (restrict param. values).
Generative vs. Discriminative

Discriminative models:
p(y|x), can’t detect outliers, more robust

Generative models:

p(x,y), can be more powerful (dectect outliers,
missing values) if assumptions are met, are typ-
ically less robust against outliers

Gaussian Mixture Model

Assume that data is generated from a convex-
co natlo f Gauss1an distributions:

(gf ?x? % IWJ‘/V?X; 1, X;)
We don’t have labg:ls and ‘want to cluster this
data. The problem is to estimate the param. for
the Gaussian distributions.

argming — Y7 log Y5y wj- A (xi | 1), %))
This is a non-convex objective. Similar to train-
ing a GBC without labels. Start with guess for
our parameters, predict the unknown labels and
then impute the missing data. Now we can get
a closed form update.

Hard-EM Algorithm, d.o.i
E-Step: predict the most likely class for each
data point:

0

! = argmax p(z | x;,07Y)

plxi|z,07Y)

M-Step: compute MLE of 8() as for GBC.
Problems: labels if the model is uncertain, tries

Z
— argmax p(z | 8/7Y).
Z

with Lloyd’s heuristics.

Soft-EM Algorithm, d.o.i

E- Step calculate the cluster membership
wei hts for each point (w; = 7TJ p(g 7 7))

7] ( i)=p(Z=j|D)= ZWkp(xl (z |))
M-Step: compute MLE with closed form.

& N AT
Ly Count(Y = y) i:y,Z:y (xi — fly) (xi — f1y)
Init. the weights as uniformly distributed, rand.
or with k-Means++ and for variances use spher-
ical init. or empirical covariance of the data.
Select k using cross-validation.
Degeneracy of GMMs
GMMs can overfit with limited data. Avoid this
by add v?I to variance, so it does not collapse
(equiv. to a Wishart prior on the covariance ma-
trix). Choose v by cross-validation.
Gaussian-Mixture Bayes Classifiers
Assume that p(x | y) for each class can be mod-
elled by a GMM.

) Z(}*))

J

k, V]
plxly) = Zj):1 WS'})/V(XQIJJ' )
Giving highly complex decision boundaries:

ky
p(]0) = 1P T WA (e 2
GMMs for Density Estlmatlon
Can be used for anomaly detection or data im-
putation. Detect outliers, by comparing the es-
timated density against 7. Allows to control the

FP rate. Use ROC curve as evaluation criterion
and optimize using CV to find 7.

General EM Algorithm
E-Step: Take the expected value over latent
variables z to generate likelihood function Q:

0(6:0"V) =Ezlogp(X.Z| ) | X,00 V)]
n k
=Y ) rv(x)logp(xi.zi | 6)
i=1z=1
with 7. (x) = p(z | x,00)

M-Step: Compute MLE / Maximize:
6'") = argmax Q(9; 9(”1))
]

We have monotonic convergence, each EM-
iteration increases the data likelihood.

ANs
Learn f : ”simple” distr. +— non linear distr.
Computing likelihood of the data becomes hard,

therefore we need a different loss.
minmax Eyp,.. [logD(x,wp)]
w,

e +Ez~p [log(1—D(G(z,wg),wp))]

to extract too much inf. Works poorly if clus- Training requires finding a saddle point, always
ters are overlapping. With uniform weights and converges to saddle point with if G, D have
spherical covariances is equivalent to k-Means enouch capacity. For a fixed G. the optimal dis-

criminator is:

pdata(x)
D X)=———
G( ) pdata(x>+p0(x)
The prob. of being fake is 1 — Dg. Too

powerful discriminator could lead to memoriza-
tion of finite data. Other issues are oscilla-
tions/divergence or mode collapse.
One possible performance metric:

DG = maxM(wg,wp) — minM (wg, wp)

Yp We

Where M(wg,wp) is the training objective.
Various
Derivatives:

VxxTA =A anTx = VxxTa =a
Vb'Ax=A"b Vua'x=2x V' Ax=2Ax
Vool ly = Xwl[3 = 2X T (Xw —y)

Bayes Tl})e((;)rf%::

ﬁp(y) -p(x|y)
Normal Distributidh: R
flx)= \/2;767(1) <_(x2_<52) >
Other Facts
Tr(AB) :Tr(BA) ( ) =E[X?] -E[X]?
XER"Xd: - O(d®) X™X — 0(nd?),
(")—( e | WH =vVwlw
Cov[X] = E[(X — EX])(X-E[x]))'] =
EXXT|-EX|EX]T
p(alx, 0) = 2]
E[s-s']=p-u" +X =X where s follows a mul-

tivariate normal distribution with mean p and
covariance matrix X
p(x,y18) = p(y|x,0) * p(x|0)
Convexity
0: L(Aw+ (1 —7L)v) <AL(w)+ (1 —=A)L(v)
1: L(w) +VL(w) " (v—w) < L(v)
2: Hessian V2L(w) = 0 (psd)
e af+PBg, a,f >0, convex if f, g convex
e fog, convex if f convex and g affine or
f non-decreasing and g convex
» max(f,g), convex if f,g convex



