
Model Error
Empirical Risk R̂D( f ) = 1

n ∑ℓ(y, f (x))
Population Risk R( f ) = Ex,y∼p[ℓ(y, f (x))]
It holds that ED[R̂D( f̂ )] ≤ R( f̂ ). We call R( f̂ )
the generalization error.
Bias Variance Tradeoff:
Pred. error = Bias2 + Variance + Noise
ED[R( f̂ )] = Ex[ f ∗(x)−ED[ f̂D(x)]]2

+Ex[ED[( f̂D(x)−ED[ f̂D(x)])2]]+σ

Bias: how close f̂ can get to f ∗

Variance: how much f̂ changes with D
Regression
Squared loss (convex, O(n2d) d = dim. feat.)

1
n ∑(yi − f (xi))

2 = 1
n ||y−Xw||22

∇wL(w) = 2X⊤(Xw− y)
Solution: ŵ = (X⊤X)−1X⊤y
Regularization
Lasso Regression (sparse, Laplac. prior, i.o.i)

argmin
w∈Rd

||y−Φw||22 +λ ||w||1

Ridge Regression (convex, Gauss. prior, i.o.i)
argmin

w∈Rd
||y−Φw||22 +λ ||w||22

∇wL(w) = 2X⊤(Xw− y)+2λw
Solution: ŵ = (X⊤X +λ I)−1X⊤y
large λ ⇒ larger bias but smaller variance
Cross-Validation

• For all folds i = 1, ...,k:
– Train f̂i on D′−D′

i
– Val. error Ri =

1
|D′

i|
∑ℓ( f̂i(x),y)

• Compute CV error 1
k ∑

k
i=1 Ri

• Pick model with lowest CV error
Gradient Descent, i.o.i
Converges only for convex case. O(n∗ k ∗d)

wt+1 = wt −ηt ·∇ℓ(wt)
For linear regression:

||wt −w∗||2 ≤ ||I −ηX⊤X ||top||w0 −w∗||2
ρ = ||I −ηX⊤X ||top conv. speed for const. η .
Opt. fixed η = 2

λmin+λmax
and max. η ≤ 2

λmax
.

Momentum: wt+1 = wt + γ∆wt−1 −ηt∇ℓ(wt)
Learning rate ηt guarantees convergence if
∑t ηt = ∞ and ∑t η2

t < ∞

Classification
Zero-One loss not convex or continuous

ℓ0−1( f̂ (x),y) = Iy ̸=sgn f̂ (x)

Logistic loss log(1+ e−y f̂ (x))
∇ℓ( f̂ (x),y) = −yixi

1+eyi f̂ (x)

Hinge loss max(0,1− y f̂ (x))
Softmax p(1|x) = 1

1+e− f̂ (x) , p(−1|x) = 1
1+e f̂ (x)

Multi-Class p̂k = e f̂k(x)/∑
K
i=1 e f̂ j(x)

Linear Classifiers
f (x) = w⊤x, the decision boundary f (x) = 0.
If data is lin. sep., grad. desc. converges to
Maximum-Margin Solution:

wMM = argmax margin(w) with ||w||2 = 1
Where margin(w) = mini yiw⊤xi.
Support Vector Machines i.o.i
Hard SVM

ŵ = minw ||w||2 s.t. ∀i yiw⊤xi ≥ 1
Soft SVM allow ”slack” in the constraints

ŵ = min
w,ξ

1
2
||w||22 +λ

n

∑
i=1

max(0,1− yiw⊤xi)︸ ︷︷ ︸
hinge lossMetrics

Choose +1 as the more important class.
error1/FPR : FP

TN + FP
error2/FNR : FN

TP + FN
Precision : TP

TP + FP
TPR / Recall : TP

TP + FN

.
AUROC: Plot TPR vs. FPR and compare dif-
ferent ROC’s with area under the curve.
F1-Score: 2TP

2TP + FP + FN , Accuracy : TP + TN
P + N

Goal: large recall and small FPR.
Kernels
Parameterize: w = Φ⊤α , K = ΦΦ⊤

A kernel is valid if K is sym.: k(x,z) = k(z,x)
and psd: z⊤Kz ≥ 0
lin.: k(x,z) = x⊤z, rbf: k(x,z) = exp(− ||x−z||α

τ
)

poly.: k(x,z) = (x⊤z+1)m O(n2 ∗d)
α = 1 ⇒ laplacian kernel
α = 2 ⇒ gaussian kernel
Kernel composition rules
k = k1 + k2, k = k1 · k2 ∀c > 0. k = c · k1,
∀ f convex. k = f (k1), holds for polynoms with
pos. coefficients or exp function.
∀ f . k(x,y) = f (x)k1(x,y) f (y)
Mercers Theorem: Valid kernels can be de-
composed into a lin. comb. of inner products.
Kern. Ridge Reg. 1

n ||y−Kα||22 +λα⊤Kα

O(dm) for large d, O(md) for large m
KNN Classification

• Pick k and distance metric d
• For given x, find among x1, ...,xn ∈ D the

k closest to x → xi1 , ...,xik
• Output the majority vote of labels

Neural Networks, d.o.i
w are the weights and ϕ : R 7→ R is a nonlinear
activation function: φ(x,w) = ϕ(w⊤x)

ReLU: max(0,z), Tanh: exp(z)−exp(−z)
exp(z)+exp(−z)

Sigmoid: 1
1+exp(−z)

Universal Approximation Theorem: We can
approximate any arbitrary smooth target func-
tion, with 1+ layer with sufficient width.
Forward Propagation
Input: v(0) = [x;1] Output: f = W (L)v(L−1)

Hidden: z(l) =W (l)v(l−1),v(l) = [ϕ(z(l));1]
Backpropagation
Non-convex optimization problem:

Only compute the gradient. Rand. init.
weights by distr. assumption for ϕ . ( 2/nin for
ReLu and 1/nin or 1/(nin +nout) for Tanh)
Overfitting
Regularization; Early Stopping; Dropout:
ignore hidden units with prob. p, after train-
ing use all units and scale weights by p; Batch
Normalization: normalize the input data (mean
0, variance 1) in each layer
CNN i.o.i ϕ(W ∗ v(l))
For each channel there is a separate filter.
Convolution
C = channel F = f ilterSize inputSize = I
padding = P stride = S

Output size l =
I +2P−K

S
+1

Output dimension = l × l ×m
Inputs =W ∗H ∗D∗C ∗N

Trainable parameters = F ∗F ∗C ∗# f ilters
Unsupervised Learning
k-Means Clustering, d.o.i
Optimization Goal (non-convex):

R̂(µ) = ∑
n
i=1 min j∈{1,...,k} ||xi −µ j||22

Lloyd’s heuristics: Init.cluster centers µ(0):
• Assign points to closest center
• Update µi as mean of assigned points

Converges in exponential time.
Initialize with k-Means++:

• Random data point µ1 = xi
• Add seq µ2, . . . ,µk rand., with prob:

given µ1: j pick µ j+1 = xi where p(i) =
1
z minl∈{1,..., j} ||xi −µl||22

Converges expectation O(logk) ∗ opt.solution.
Find k by negligible loss decrease or reg.

Principal Component Analysis
Optimization goal: argmin

||w||2=1,z
∑

n
i=1 ||xi − ziw||22

The optimal solution is given by zi = w⊤xi.
Substituting gives us:

ŵ = argmax||w||2=1 w⊤Σw
Where Σ = 1

n ∑
n
i=1 xix⊤i is the empirical covari-

ance. Closed form solution given by the princi-
pal eigenvector of Σ, i.e. w = v1 for λ1 ≥ ·· · ≥
λd ≥ 0: Σ = ∑

d
i=1 λiviv⊤i

For k > 1 we have to change the normalization
to W⊤W = I then we just take the first k princi-
pal eigenvectors so that W = [v1, . . . ,vk].
PCA through SVD, i.o.i

• The first k col of V where X =USV⊤.
• linear dimension reduction method
• first principal component eigenvector of

data covariance matrix with largest eigen-
value

• covariance matrix is symmetric → all
principal components are mutually or-
thogonal

Kernel PCA
Σ = 1

n ∑
n
i=1 xix⊤i = X⊤X ⇒ kernel trick:

α̂ = argmaxα
α⊤K⊤Kα

α⊤K α

Closed form solution:
α(i) = 1√

λi
vi K = ∑

n
i=1 λiviv⊤i ,λ1 ≥ ·· · ≥ 0

A point x is projected as: zi = ∑
n
j=1 α

(i)
j k(x j,x)

Autoencoders
We want to minimize 1

n ∑
n
i=1 ||xi − x̂i||22.

x̂ = fdec( fenc(x,θenc);θdec)
Lin.activation func. & square loss => PCA
Statistical Perspective
Assume that data is generated iid. by some
p(x,y). We want to find f : X 7→ Y that mini-
mizes the population risk.
Opt. Predictor for the Squared Loss
f minimizing the population risk:

f ∗(x) = E[y | X = x] =
∫

y · p(y | x)dy
Estimate p̂(y | x) with MLE:

θ
∗ = argmax

θ

p̂(y1, ...,yn | x1, ...,xn,θ)

= argmin
θ

−
n

∑
i=1

log p(yi | x,θ)
The MLE for linear regression is unbiased and
has minimum variance among all unbiased esti-
mators. However, it can overfit.
Ex. Conditional Linear Gaussian
Assume Gaussian noise y = f (x)+ ε with ε ∼
N (0,σ2) and f (x) = w⊤x:

p̂(y | x,θ) = N (y;w⊤x,σ2)

1



The optimal ŵ can be found using MLE:
ŵ = argmax

w
p(y| x,θ) = argmin

w
∑(yi −w⊤xi)

2

Maximum a Posteriori Estimate
Introduce bias to reduce variance. The small
weight assumption is a Gaussian prior wi ∼
N (0,β 2). The posterior distribution of w is
given by:

p(w | x,y) =
p(w) · p(y | x,w)

p(y | x)
= p(w)·(y | x,w)

Now we want to find the MAP for w:
ŵ = argmaxw p(w | x̄, ȳ)

= argminw − log p(w)·p(y | x,w)
p(y | x)

= argminw
σ2

β 2 ||w||22 +∑
n
i=1(yi −w⊤xi)

2

If Pθ =Uni f (Θ) : θbMAP = bθMLE

Statistical Models for Classification
f minimizing the population risk:

f ∗(x) = argmaxŷ p(ŷ | x)
This is called the Bayes’ optimal predictor for
the 0-1 loss. Assuming iid. Bernoulli noise, the
conditional probability is:

p(y | x,w)∼ Ber(y;σ(w⊤x))
Where σ(z)= 1

1+exp(−z) is the sigmoid function.
Using MLE we get:

ŵ = argmin
w

∑
n
i=1 log(1+ exp(−yiw⊤xi))

Which is the logistic loss. Instead of MLE we
can estimate MAP, e.g. with a Gaussian prior:
ŵ = argmin

w
λ ||w||22 +∑

n
i=1 log(1+ e−yiw⊤xi)

Bayesian Decision Theory
Given p(y | x), a set of actions A and a cost
C : Y ×A 7→ R, pick the action with the max-
imum expected utility.

a∗ = argmina∈A Ey[C(y,a) | x]
Can be used for asymetric costs or abstention.
Generative Modeling
Aim to estimate p(x,y) for complex situations
using Bayes’ rule: p(x,y) = p(x|y) · p(y)
Naive Bayes Model
GM for classification tasks. Assuming for a
class label, each feature is independent. This
helps estimating p(x | y) = ∏

d
i=1 p(xi | yi).

Gaussian Naive Bayes Classifier
Naive Bayes Model with Gaussian’s features.
Estimate the parameters via MLE:
MLE for class prior: p(y) = p̂y =

Count(Y=y)
n

MLE for feature distribution:

P(xi|y) =
Count(Xi = xi,Y = y)

Count(Y = y)

Predictions are made by:
y = argmax

ŷ
p(ŷ | x) = argmax

ŷ
p(ŷ) ·

d

∏
i=1

p(xi | ŷ)

Equivalent to decision rule for bin. class.:
y = sgn

(
log p(Y=+1 | x)

p(Y=−1 | x)

)
Where f (x)is called the discriminant function.
If the conditional independence assumption is
violated, the classifier can be overconfident.
Gaussian Bayes Classifier
No independence assumption, model the
features with a multivariant Gaussian
N (x; µy,Σy):

µy =
1

Count(Y=y) ∑ j | y j=y x j

Σy =
1

Count(Y=y) ∑ j | y j=y(x j − µ̂y)(x j − µ̂y)
⊤

This is also called the quadratic discriminant
analysis (QDA). LDA: Σ+ = Σ−, Fisher LDA:
p(y) = 1

2 , Outlier detection: p(x)≤ τ .
Avoiding Overfitting
MLE is prone to overfitting. Avoid this by
restricting model class (fewer parameters, e.g.
GNB) or using priors (restrict param. values).
Generative vs. Discriminative
Discriminative models:
p(y|x), can’t detect outliers, more robust
Generative models:
p(x,y), can be more powerful (dectect outliers,
missing values) if assumptions are met, are typ-
ically less robust against outliers
Gaussian Mixture Model
Assume that data is generated from a convex-
combination of Gaussian distributions:
p(x|θ) = p(x|µ,Σ,w) = ∑

k
j=1 w jN (x; µ j,Σ j)

We don’t have labels and want to cluster this
data. The problem is to estimate the param. for
the Gaussian distributions.
argminθ −∑

n
i=1 log∑

k
j=1 w j ·N (xi | µ j,Σ j)

This is a non-convex objective. Similar to train-
ing a GBC without labels. Start with guess for
our parameters, predict the unknown labels and
then impute the missing data. Now we can get
a closed form update.
Hard-EM Algorithm, d.o.i
E-Step: predict the most likely class for each
data point:

z(t)i = argmax
z

p(z | xi,θ
(t−1))

= argmax
z

p(z | θ
(t−1)) · p(xi | z,θ (t−1))

M-Step: compute MLE of θ (t) as for GBC.
Problems: labels if the model is uncertain, tries
to extract too much inf. Works poorly if clus-
ters are overlapping. With uniform weights and
spherical covariances is equivalent to k-Means

with Lloyd’s heuristics.
Soft-EM Algorithm, d.o.i
E-Step: calculate the cluster membership
weights for each point (w j = π j = p(Z = j)):

γ
(t)
j (xi) = p(Z = j | D) =

w j·p(xi;θ
(t−1)
j )

∑k wk·p(xi;θ
(t−1)
k )

M-Step: compute MLE with closed form:

Σ̂y =
1

Count(Y = y) ∑
i:yi=y

(xi − µ̂y)(xi − µ̂y)
T

Init. the weights as uniformly distributed, rand.
or with k-Means++ and for variances use spher-
ical init. or empirical covariance of the data.
Select k using cross-validation.
Degeneracy of GMMs
GMMs can overfit with limited data. Avoid this
by add v2I to variance, so it does not collapse
(equiv. to a Wishart prior on the covariance ma-
trix). Choose v by cross-validation.
Gaussian-Mixture Bayes Classifiers
Assume that p(x | y) for each class can be mod-
elled by a GMM.

p(x | y) = ∑
ky
j=1 w(y)

j N (x; µ
(y)
j ,Σ

(y)
j )

Giving highly complex decision boundaries:
p(y | x) = 1

z p(y)∑
ky
j=1 w(y)

j N (x; µ
(y)
j ,Σ

(y)
j )

GMMs for Density Estimation
Can be used for anomaly detection or data im-
putation. Detect outliers, by comparing the es-
timated density against τ . Allows to control the
FP rate. Use ROC curve as evaluation criterion
and optimize using CV to find τ .
General EM Algorithm
E-Step: Take the expected value over latent
variables z to generate likelihood function Q:
Q(θ ;θ

(t−1)) = EZ[log p(X ,Z | θ) | X ,θ (t−1)]

=
n

∑
i=1

k

∑
zi=1

γzi(xi) log p(xi,zi | θ)

with γz(x) = p(z | x,θ (t−1))
M-Step: Compute MLE / Maximize:

θ
(t) = argmax

θ

Q(θ ;θ
(t−1))

We have monotonic convergence, each EM-
iteration increases the data likelihood.
GANs
Learn f : ”simple” distr. 7→ non linear distr.
Computing likelihood of the data becomes hard,
therefore we need a different loss.

min
wG

max
wD

Ex∼pdata [logD(x,wD)]

+Ez∼pz [log(1−D(G(z,wG),wD))]
Training requires finding a saddle point, always
converges to saddle point with if G, D have
enough capacity. For a fixed G, the optimal dis-

criminator is:

DG(x) =
pdata(x)

pdata(x)+ pG(x)
The prob. of being fake is 1 − DG. Too
powerful discriminator could lead to memoriza-
tion of finite data. Other issues are oscilla-
tions/divergence or mode collapse.
One possible performance metric:

DG = max
w′

D

M(wG,w′
D)−min

w′
G

M(w′
G,wD)

Where M(wG,wD) is the training objective.
Various
Derivatives:

∇xx⊤A = A ∇xa⊤x = ∇xx⊤a = a
∇xb⊤Ax = A⊤b ∇xx⊤x = 2x ∇xx⊤Ax = 2Ax

∇w||y−Xw||22 = 2X⊤(Xw− y)
Bayes Theorem:

p(y | x) =
1

p(x)
p(y) · p(x | y)︸ ︷︷ ︸

p(x,y)
Normal Distribution:
f (x) = 1√

2πσ2 exp
(
− (x−µ)2

2σ2

)
Other Facts
Tr(AB) = Tr(BA), Var(X) = E[X2]−E[X ]2

X ∈ Rn×d : X−1 → O(d3) X⊤X → O(nd2),(n
k

)
= n!

(n−k)!k! , ||w
⊤w||2 =

√
w⊤w

Cov[X ] = E[(X − E[X ])(X −E[X ])⊤] =
E[XX⊤]−E[X ]E[X ]⊤

p(z|x,θ) = p(x,z|θ)
p(x|θ)

E[s ·s⊤] = µ ·µ⊤+Σ=Σ where s follows a mul-
tivariate normal distribution with mean µ and
covariance matrix Σ
p(x,y|θ) = p(y|x,θ)∗ p(x|θ)
Convexity
0: L(λw+(1−λ )v)≤ λL(w)+(1−λ )L(v)
1: L(w)+∇L(w)⊤(v−w)≤ L(v)
2: Hessian ∇2L(w)≽ 0 (psd)

• α f +βg, α,β ≥ 0, convex if f ,g convex
• f ◦ g, convex if f convex and g affine or

f non-decreasing and g convex
• max( f ,g), convex if f ,g convex
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