Model Error

Empirical Risk *R*ˆ*D*(*f*) = ¹ $\hat{R}_D(f) = \frac{1}{n} \sum \ell(y, f(x))$ **Population Risk** $R(f) = \mathbb{E}_{x,y \sim p}[\ell(y, f(x))]$ It holds that $\mathbb{E}_D[\hat{R}_D(\hat{f})] \le R(\hat{f})$. We call $R(\hat{f})$ the generalization error. Bias Variance Tradeoff:

Pred. error = $Bias^2$ + Variance + Noise $\mathbb{E}_D[R(\hat{f})] = \mathbb{E}_x[f^*(x) - \mathbb{E}_D[\hat{f}_D(x)]]^2$ $+\mathbb{E}_x[\mathbb{E}_D[(\hat{f}_D(x)-\mathbb{E}_D[\hat{f}_D(x)])^2]]+\sigma$

Bias: how close \hat{f} can get to f^*

Variance: how much \hat{f} changes with *D* **Regression**

Squared loss (convex,
$$
\mathcal{O}(n^2d)
$$
 $d = \text{dim.} \text{ feat.})$
\n
$$
\frac{1}{n} \sum (y_i - f(x_i))^2 = \frac{1}{n} ||y - Xw||_2^2
$$
\n
$$
\nabla_w L(w) = 2X^\top (Xw - y)
$$
\nSolution: $\hat{w} = (X^\top X)^{-1} X^\top y$

Regularization

Lasso Regression (sparse, Laplac. prior, i.o.i) $\text{argmin} \frac{|y - \Phi w||_2^2 + \lambda ||w||_1}{\sigma}$ *w*∈R*^d* Ridge Regression (convex, Gauss. prior, i.o.i) $\text{argmin} \frac{|y - \Phi w||_2^2 + \lambda ||w||_2^2}{\sigma}$ *w*∈R*^d* $\nabla_w L(w) = 2X^\top (Xw - y) + 2\lambda w$ Solution: $\hat{w} = (X^{\top}X + \lambda I)^{-1}X^{\top}y$

large $\lambda \Rightarrow$ larger bias but smaller variance **Cross-Validation**

• For all folds
$$
i = 1, ..., k
$$
:
\n– Train \hat{f}_i on $D' - D'_i$
\n– Val. error $R_i = \frac{1}{|D'_i|} \sum \ell(\hat{f}_i(x), y)$

• Compute CV error $\frac{1}{k} \sum_{i=1}^{k} R_i$

• Pick model with lowest *CV* error **Gradient Descent, i.o.i**

Converges only for convex case. $\mathcal{O}(n*k*d)$ $w^{t+1} = w^t - \eta_t \cdot \nabla \ell(w^t)$

For linear regression:

$$
||w^{t} - w^{*}||_{2} \le ||I - \eta X^{\top} X||_{op}^{t}||w^{0} - w^{*}||_{2}
$$

$$
\rho = ||I - \eta X^{\top} X||_{op}^{t}
$$
 conv. speed for const. η .

Opt. fixed $\eta = \frac{2}{\lambda_{\min} + \lambda_{\max}}$ and max. $\eta \leq \frac{2}{\lambda_{\min}}$ $rac{2}{\lambda_{\max}}$. **Momentum**: $w^{t+1} = w^t + \gamma \Delta w^{t-1} - \eta_t \nabla \ell(w^t)$ Learning rate η_t guarantees convergence if $\sum_{t} \eta_t = \infty$ and $\sum_{t} \eta_t^2 < \infty$ **Classification Zero-One loss** not convex or continuous $\ell_{0-1}(\hat{f}(x), y) = \mathbb{I}_{y \neq \text{sgn}\hat{f}(x)}$

Logistic loss $log(1 + e^{-y\hat{f}(x)})$ $\nabla \ell(\hat{f}(x), y) = \frac{-y_i x_i}{1 + e^{y_i \hat{f}(x)}}$

Hinge loss max $(0,1-y\hat{f}(x))$ $\textbf{Softmax } p(1|x) = \frac{1}{1+e^{-\hat{f}(x)}}, p(-1|x) = \frac{1}{1+e^{\hat{f}(x)}}$ Multi-Class $\hat{p}_k = e^{\hat{f}_k(x)} / \sum_{i=1}^K e^{\hat{f}_j(x)}$ **Linear Classifiers**

 $f(x) = w^{\top}x$, the decision boundary $f(x) = 0$. If data is lin. sep., grad. desc. converges to Maximum-Margin Solution:

 w_{MM} = argmax margin(*w*) with $||w||_2 = 1$ Where $\text{margin}(w) = \min_i y_i w^\top x_i$. **Support Vector Machines i.o.i** Hard SVM

$$
\hat{w} = \min_{w} ||w||_2 \text{ s.t. } \forall i y_i w^\top x_i \ge 1
$$

\n**Soft SVM** allow "slack" in the constraints
\n
$$
\hat{w} = \min_{z} \frac{1}{2} ||w||_2^2 + \lambda \sum_{i=1}^n \max(0, 1 - y_i w^\top x_i)
$$

\n**MetricS**^W

Choose $+1$ as the more important class.

True Class $error_1/FPR$ $TN + FP$ $error_2/FNR$: $\frac{1}{TP + FN}$ FP $\frac{1}{2}$ $\frac{1}{2}$ ferent ROC's with area under the curve. **F1-Score:** $\frac{2TP}{2TP + FP + FN}$, Accuracy : $\frac{TP + TN}{P + N}$ Goal: large recall and small FPR. **Kernels**

Parameterize: *w* = Φ⊤α, *K* = ΦΦ[⊤] A kernel is valid if *K* is sym.: *k*(*x*,*z*) = *k*(*z*, *x*) and psd: *z* [⊤]*Kz* ≥ 0 lin.: *k*(*x*,*z*) = *x* [⊤]*z*, rbf: *k*(*x*,*z*) = exp(− ||*x*−*z*||^α τ) poly.: *k*(*x*,*z*) = (*x* [⊤]*z*+1) *^m* O(*n* ² ∗ *d*) α = 1 ⇒ laplacian kernel α = 2 ⇒ gaussian kernel Kernel composition rules *k* = *k*¹ + *k*2, *k* = *k*¹ · *k*² ∀*c* > 0. *k* = *c* · *k*1, ∀ *f* convex. *k* = *f*(*k*1), holds for polynoms with pos. coefficients or exp function. ∀ *f*. *k*(*x*, *y*) = *f*(*x*)*k*1(*x*, *y*)*f*(*y*) Mercers Theorem: Valid kernels can be decomposed into a lin. comb. of inner products. Kern. Ridge Reg. ¹ *n* ||*y*−*K*α||² ² +λα⊤*K*α O(*d ^m*) for large d, O(*m d*) for large m **KNN Classification** • Pick *k* and distance metric *d* • For given *x*, find among *x*1,..., *xⁿ* ∈ *D* the *k* closest to *x* → *xi*¹ ,..., *xi^k* • Output the majority vote of labels

activation function: $\phi(x, w) = \phi(w^{\top}x)$

ReLU: $max(0, z)$, Tanh: $\frac{exp(z) - exp(-z)}{exp(z) + exp(-z)}$ Sigmoid: $\frac{1}{1+\exp(-z)}$

Universal Approximation Theorem: We can approximate any arbitrary smooth target function, with 1+ layer with sufficient width. **Forward Propagation**

 $Input: v^{(0)} = [x; 1]$ Output: $f = W^{(L)}v^{(L-1)}$ Hidden: $z^{(l)} = W^{(l)} v^{(l-1)}, v^{(l)} = [\varphi(z^{(l)}); 1]$

Backpropagation

Non-convex optimization problem:

$$
\left(\nabla_{W^{(L)}} \ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial W^{(L)}} \n\left(\nabla_{W^{(L-1)}} \ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-1)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial W^{(L-1)}} \n\left(\nabla_{W^{(L-2)}} \ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-2)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial W^{(L-2)}}
$$

Only compute the gradient. Rand. init. weights by distr. assumption for φ . (2/*n*_{in} for ReLu and $1/n_{in}$ or $1/(n_{in}+n_{out})$ for Tanh)

Overfitting

Regularization; Early Stopping; Dropout: ignore hidden units with prob. \overline{p} , after training use all units and scale weights by p ; **Batch Kernel PCA Normalization:** normalize the input data (mean $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^\top = X^\top X \Rightarrow$ kernel trick: 0, variance 1) in each layer

CNN i.o.i $\varphi(W * \nu^{(l)})$

For each channel there is a separate filter. **Convolution**

$$
C = channel \ F = filterSize \ inputSize = I
$$

padding = P stride = S

Output size
$$
1 = \frac{I + 2P - K}{S} + 1
$$

Output dimension $= l \times l \times m$

 I nputs = $W * H * D * C * N$

Trainable parameters = $F * F * C * # filters$ **Unsupervised Learning**

k-Means Clustering, d.o.i

Optimization Goal (non-convex):

$$
\hat{R}(\mu) = \sum_{i=1}^{n} \min_{j \in \{1, ..., k\}} ||x_i - \mu_j||_2^2
$$

Lloyd's heuristics: Init.cluster centers $\mu^{(0)}$:

- Assign points to closest center
- Update μ_i as mean of assigned points Converges in exponential time. nitialize with $\mathbf k$ -Means++:
	- Random data point $\mu_1 = x_i$
		- given $\mu_{1:j}$ pick $\mu_{j+1} = x_i$ where $p(i) =$ mators. However, it can overfit. $\frac{1}{z} \min_{l \in \{1,...,j\}} ||x_i - \mu_l||_2^2$

Neural Networks, d.o.i
 w are the weights and $\varphi : \mathbb{R} \to \mathbb{R}$ is a nonlinear Find *k* by negligible loss decrease or reg. Converges expectation $\mathcal{O}(\log k)$ * opt. solution.

Principal Component Analysis

Optimization goal: $\operatorname{argmin}_{i=1} \sum_{i=1}^{n} ||x_i - z_i w||_2^2$ $||w||_2=1,z$

The optimal solution is given by $z_i = w^\top x_i$. Substituting gives us:

$$
\hat{w} = \operatorname{argmax}_{||w||_2 = 1} w^\top \Sigma w
$$

Where $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^\top$ is the empirical covariance. Closed form solution given by the principal eigenvector of Σ , i.e. $w = v_1$ for $\lambda_1 \geq \cdots \geq$ $\lambda_d \geq 0$: $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^{\top}$

For $k > 1$ we have to change the normalization to $W[†]W = I$ then we just take the first *k* principal eigenvectors so that $W = [v_1, \ldots, v_k]$. **PCA through SVD, i.o.i**

- The first *k* col of *V* where $X = USV^{\top}$.
- linear dimension reduction method
- first principal component eigenvector of data covariance matrix with largest eigenvalue
- covariance matrix is symmetric \rightarrow all principal components are mutually orthogonal

 $\hat{\alpha} = \operatorname{argmax}_{\alpha} \frac{\alpha^{\top} K^{\top} K \alpha}{\alpha^{\top} K \alpha}$ α⊤*K* α

Closed form solution:
\n
$$
\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i \quad K = \sum_{i=1}^n \lambda_i v_i v_i^{\top}, \lambda_1 \geq \cdots \geq 0
$$

I A point *x* is projected as:
$$
z_i = \sum_{j=1}^n \alpha_j^{(i)} k(x_j, x)
$$

Autoencoders

We want to minimize $\frac{1}{n} \sum_{i=1}^{n} ||x_i - \hat{x}_i||_2^2$. $\hat{x} = f_{dec}(f_{enc}(x, \theta_{enc}); \theta_{dec})$ Lin.activation func. & square $loss = > PCA$

Statistical Perspective

Assume that data is generated iid. by some $p(x, y)$. We want to find $f: X \mapsto Y$ that minimizes the population risk.

Opt. Predictor for the Squared Loss

f minimizing the population risk:

$$
f^*(x) = \mathbb{E}[y | X = x] = \int y \cdot p(y | x) dy
$$

Estimate $\hat{p}(y | x)$ with MLE:

$$
\theta^* = \underset{\theta}{\operatorname{argmax}} \ \hat{p}(y_1, ..., y_n \mid x_1, ..., x_n, \theta)
$$

$$
= \underset{\theta}{\operatorname{argmin}} - \sum_{i=1}^n \log p(y_i \mid x, \theta)
$$

• Add seq μ_2, \ldots, μ_k rand., with prob: has minimum variance among all unbiased esti-The MLE for linear regression is unbiased and

Ex. Conditional Linear Gaussian

Assume Gaussian noise $y = f(x) + \varepsilon$ with $\varepsilon \sim$ $\mathcal{N}(0, \sigma^2)$ and $f(x) = w^{\top}x$: $\hat{p}(y \mid x, \theta) = \mathcal{N}(y; w^{\top}x, \sigma^2)$

The optimal
$$
\hat{w}
$$
 can be found using MLE:
\n $\hat{w} = \arg\max p(y | x, \theta) = \arg\min \sum (y_i - w^\top x_i)$

w w **Maximum a Posteriori Estimate**

Introduce bias to reduce variance. The small weight assumption is a Gaussian prior *wⁱ* ∼ $\mathcal{N}(0,\beta^2)$. The posterior distribution of *w* is given by:

$$
p(w | x, y) = \frac{p(w) \cdot p(y | x, w)}{p(y | x)} = p(w) \cdot (y | x, w)
$$

Now we want to find the MAP for *w*: $\hat{w} = \argmax_{w} p(w | \bar{x}, \bar{y})$

$$
= \underset{w}{\text{argmin}} \frac{\text{argmin}}{w} - \log \frac{p(w) \cdot p(y \mid x, w)}{p(y \mid x)}
$$

= \underset{w}{\text{argmin}} \frac{\sigma^2}{\beta^2} ||w||_2^2 + \sum_{i=1}^{n} (y_i - w^\top x_i)^2

If $P_{\theta} = Unif(\Theta)$: $\theta_{b_{\text{MAP}}} = b_{\theta_{\text{MLE}}}$

Statistical Models for Classification

f minimizing the population risk:

$$
f^*(x) = \operatorname{argmax}_{\hat{y}} p(\hat{y} | x)
$$

This is called the Bayes' optimal predictor for MLE is prone to overfitting. Avoid this by the 0-1 loss. Assuming iid. Bernoulli noise, the conditional probability is:

$$
p(y | x, w) \sim \text{Ber}(y; \sigma(w^{\top} x))
$$

Where $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function. Using MLE we get:

$$
\hat{w} = \operatorname{argmin} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^\top x_i))
$$

Which is the logistic loss. Instead of MLE we can estimate MAP, e.g. with a Gaussian prior:

$$
\hat{w} = \underset{w}{\text{argmin}} \ \lambda ||w||_2^2 + \sum_{i=1}^n \log(1 + e^{-y_i w^\top x_i})
$$

Bayesian Decision Theory

Given $p(y | x)$, a set of actions A and a cost $C: Y \times A \mapsto \mathbb{R}$, pick the action with the maximum expected utility.

$$
a^* = \operatorname{argmin}_{a \in A} \mathbb{E}_y[C(y, a) \mid x]
$$

Can be used for asymetric costs or abstention. **Generative Modeling**

Aim to estimate
$$
p(x, y)
$$
 for complex situations
using Bayes' rule: $p(x, y) = p(x|y) \cdot p(y)$

Naive Bayes Model

GM for classification tasks. Assuming for a class label, each feature is independent. This helps estimating $p(x | y) = \prod_{i=1}^{d} p(x_i | y_i)$.

Gaussian Naive Bayes Classifier

Naive Bayes Model with Gaussian's features. Estimate the parameters via MLE:

MLE for class prior: $p(y) = \hat{p}_y = \frac{\text{Count}(Y=y)}{n}$ *n* MLE for feature distribution:

$$
P(x_i|y) = \frac{Count(X_i = x_i, Y = y)}{Count(Y = y)}
$$

2 $y = \argmax_{\hat{y}} p(\hat{y} | x) = \argmax_{\hat{y}} p(\hat{y}) \cdot \prod_{i} p(x_i | \hat{y})$ Predictions are made by: *d*

*y*ˆ *y*ˆ Equivalent to decision rule for bin. class.: $y = \text{sgn}\left(\log \frac{p(Y=+1 | x)}{p(Y=-1 | x)}\right)$

Where $f(x)$ is called the discriminant function. If the conditional independence assumption is M-Step: compute MLE with closed form: violated, the classifier can be overconfident.

Gaussian Bayes Classifier

No independence assumption, model the features with a multivariant Gaussian $\mathcal{N}(x; \mu_{v}, \Sigma_{v})$:

$$
\mu_{y} = \frac{1}{\text{Count}(Y=y)} \sum_{j} |y_{j}=y} x_{j}
$$

$$
\Sigma_{y} = \frac{1}{\text{Count}(Y=y)} \sum_{j} |y_{j}=y} (x_{j} - \hat{\mu}_{y}) (x_{j} - \hat{\mu}_{y})^{\top}
$$

This is also called the quadratic discriminant analysis (QDA). LDA: $\Sigma_{+} = \Sigma_{-}$, Fisher LDA: $p(y) = \frac{1}{2}$, Outlier detection: $p(x) \leq \tau$.

Avoiding Overfitting

restricting model class (fewer parameters, e.g. GNB) or using priors (restrict param. values).

Generative vs. Discriminative Discriminative models:

 $p(y|x)$, can't detect outliers, more robust Generative models:

p(*x*, *y*), can be more powerful (dectect outliers, **GMMs for Density Estimation** missing values) if assumptions are met, are typ-Can be used for anomaly detection or data imically less robust against outliers

Gaussian Mixture Model

combination of Gaussian distributions: $p(x|\theta) = p(x|\mu, \Sigma, w) = \sum_{j=1}^{K} w_j \mathcal{N}(x; \mu_j, \Sigma_j)$ We don't have labels and want to cluster this **E-Step**: Take the expected value over latent covariance matrix \sum data. The problem is to estimate the param. for variables *z* to generate likelihood function *Q*:

the Gaussian distributions.

$$
\operatorname{argmin}_{\theta} - \sum_{i=1}^{n} \log \sum_{j=1}^{k} w_j \cdot \mathcal{N}(x_i \mid \mu_j, \Sigma_j)
$$

This is a non-convex objective. Similar to training a GBC without labels. Start with guess for

our parameters, predict the unknown labels and then impute the missing data. Now we can get $M\text{-Step: Compute MLE}$ / Maximize:

a closed form update. **Hard-EM Algorithm, d.o.i**

E-Step: predict the most likely class for each data point:

$$
z_i^{(t)} = \underset{z}{\operatorname{argmax}} p(z | x_i, \theta^{(t-1)})
$$

=
$$
\underset{z}{\operatorname{argmax}} p(z | \theta^{(t-1)}) \cdot p(x_i | z, \theta^{(t-1)})
$$

M-Step: compute MLE of $\theta^{(t)}$ as for GBC.

Problems: labels if the model is uncertain, tries to extract too much inf. Works poorly if clus-

with Lloyd's heuristics. **Soft-EM Algorithm, d.o.i**

E-Step: calculate the cluster membership weights for each point $(w_j = \pi_j = p(Z_{\overline{i}} = j))$:
 $p^{(t)}(x_j) = p(Z_{\overline{i}} + D) = {w_j \cdot p(x_i; \theta_j^{(t)} = j)}$ $\gamma_j^{(t)}(x_i) = p(Z = j | D) = \frac{w'_j}{\sum_{k} y_i}$ $\sum_k w_k \cdot p(x_i; \theta_k^{(t-1)})$

$$
\hat{\Sigma}_y = \frac{1}{\text{Count}(Y = y)} \sum_{i: y_i = y} (\mathbf{x}_i - \hat{\mu}_y) (\mathbf{x}_i - \hat{\mu}_y)^T
$$

Init. the weights as uniformly distributed, rand. or with k-Means++ and for variances use spher- $\frac{W \text{ Here } m}{\text{Various}}$ ical init. or empirical covariance of the data. **Various** Select *k* using cross-validation.

Degeneracy of GMMs

GMMs can overfit with limited data. Avoid this by add v^2I to variance, so it does not collapse (equiv. to a Wishart prior on the covariance matrix). Choose *v* by cross-validation.

Gaussian-Mixture Bayes Classifiers

Assume that
$$
p(x | y)
$$
 for each class can be modelled by a GMM.

 $p(x | y) = \sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)})$ $\sum_{j}^{(y)}$, $\Sigma_{j}^{(y)}$

j) Giving highly complex decision boundaries:

$$
p(y | x) = \frac{1}{z} p(y) \sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)}, \Sigma_j^{(y)})
$$

Assume that data is generated from a convex-FP rate. Use ROC curve as evaluation criterion putation. Detect outliers, by comparing the estimated density against τ . Allows to control the and optimize using CV to find τ .

General EM Algorithm

$$
Q(\theta; \theta^{(t-1)}) = \mathbb{E}_Z[\log p(X, Z \mid \theta) | X, \theta^{(t-1)}]
$$

=
$$
\sum_{i=1}^n \sum_{z_i=1}^k \gamma_{z_i}(x_i) \log p(x_i, z_i \mid \theta)
$$

with $\gamma_z(x) = p(z \mid x, \theta^{(t-1)})$

$$
\boldsymbol{\theta}^{(t)} = \operatorname{argmax} Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t-1)})
$$

θ We have monotonic convergence, each EMiteration increases the data likelihood. **GANs**

Learn f : "simple" distr. \mapsto non linear distr. Computing likelihood of the data becomes hard, therefore we need a different loss.

 $\lim_{w_G} \max_{w_D} \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x, w_D)]$

$$
\left[\mathbb{E}_{z \sim p_z}[\log(1 - D(G(z, w_G), w_D))]\right]
$$

ters are overlapping. With uniform weights and converges to saddle point with if G, D have spherical covariances is equivalent to k-Means enough capacity. For a fixed G , the optimal dis-Training requires finding a saddle point, always

criminator is:

$$
D_G(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)}
$$

The prob. of being fake is $1 - D_G$. Too powerful discriminator could lead to memorization of finite data. Other issues are oscillations/divergence or mode collapse.

One possible performance metric:

$$
\hat{DG} = \max_{w'_D} M(w_G, w'_D) - \min_{w'_G} M(w'_G, w_D)
$$

Where $M(w_G, w_D)$ is the training objective.

Derivatives:

j)

$$
\nabla_x x^\top A = A \quad \nabla_x a^\top x = \nabla_x x^\top a = a
$$
\n
$$
\nabla_x b^\top Ax = A^\top b \quad \nabla_x x^\top x = 2x \quad \nabla_x x^\top Ax = 2Ax
$$
\n
$$
\nabla_w ||y - Xw||_2^2 = 2X^\top (Xw - y)
$$
\n**Bayes Theorem:**\n
$$
p(y | x) = \frac{1}{\rho(x)} p(y) \cdot p(x | y)
$$
\n**Normal Distribution:**\n
$$
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)^{p(x, y)}
$$
\n**Other Facts**

$$
\text{Tr}(AB) = \text{Tr}(BA), \text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2
$$
\n
$$
X \in \mathbb{R}^{n \times d} : X^{-1} \to \mathcal{O}(d^3) X^{\top} X \to \mathcal{O}(nd^2),
$$
\n
$$
\binom{n}{k} = \frac{n!}{(n-k)!k!}, ||w^{\top}w||_2 = \sqrt{w^{\top}w}
$$
\n
$$
\text{Cov}[X] = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top}] =
$$
\n
$$
E[XX^{\top}] - E[X]E[X]^{\top}
$$
\n
$$
p(z|x, \theta) = \frac{p(x, z|\theta)}{p(x|\theta)}
$$
\n
$$
E[s \cdot s^{\top}] = \mu \cdot \mu^{\top} + \Sigma = \Sigma \text{ where } s \text{ follows a mul-
$$

tivariate normal distribution with mean μ and

$$
p(x, y | \theta) = p(y | x, \theta) * p(x | \theta)
$$

\n**Convexity**
\n0: $L(\lambda w + (1 - \lambda)v) \leq \lambda L(w) + (1 - \lambda)L(v)$
\n1: $L(w) + \nabla L(w)^\top (v - w) \leq L(v)$
\n2: Hessian $\nabla^2 L(w) \geq 0$ (psd)

- $\alpha f + \beta g$, $\alpha, \beta \ge 0$, convex if *f*, *g* convex
- *f g*, convex if *f* convex and *g* affine or *f* non-decreasing and *g* convex
- max (f, g) , convex if f, g convex