ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Parallel Programming

Parallel Programming

Gnkgo, Informatik B. Sc. 2. Semester

Spring Semester 2021 1

ETH

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Parallel Programming
Contents
1 Creating a Thread| 2
|12 Joining threads| 2
3__Thread statesl| 3
4_Data Races| 3
[Tmportant to Remember] 3
speedup| . . . L L e 3
B2 Amdahll o 4
B3 GustafSonl o o o e 4
4 W PAN| . . . e e e 4
9.5 Divide and Conquer with ExecutorService] 4
6 Using Recursive Task in Javal 5
7 Throughput| 5
8 Latency 5
9 _MPI 6
9.1 Synchronous, asynchronous, blocking, non-blockingf 0000 6
|LO0 Transactional Memory| 6
111 Important Code] 6
LT BAITICH . « -« o o oo e e e e e e e e e 6
[11.2 Semaphore| 7
M3 PetersonLockl o o o o 8
LA FterTockl . . .« . o o e 8
I11.5 BakeryLock| o 8
1.6 TAS . . . e e 9
LT CASl . e 9
L8 TASLOCK . . . o o e e e e 10
L9 TATASTOCK o o o e e e e 10

Spring Semester 2021 1

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Parallel Programming

1 Creating a Thread

public class Useless extends Thread {

int 1i;

Useless (int i) {
this.i = i;

}

public void run() {
System.out.println("Thread says hi" + 1i);
System.out.println("Thread says bye" + 1i);

}

public class M {
public static void main(String[] args) {
for (int i = 0; i < 20; i++) {

Thread t = new Useless(i + 1);
t.start(); // Important: you cannot use t.run() --> t.run doesn’t create a new
Thread

Important: You can only create a Thread when you use start(). The run method has no return value and no
argument.

2 Joining threads

public class Useless extends Thread {

int 1i;

Useless (int i) {
this.i = i;

}

public void run() {
System.out.println("Thread says hi" + i);
System.out.println("Thread says bye" + 1i);

}

public class M {
public static void main(String[] args) {
Thread[] threads = new Thread[20];
for (int i = 0; i < 20; i++) {
Thread t = new Useless(i + 1);
t.start () ;
threads[i] = t;
}
for (int i = 0; i < 20; i++) {
try { // need catch block around join
threads [i]. join () ;
} catch (InterruptedException e) {
// Some catch block
}
}
System.out.println("All done.");

With ”join,” you wait until every thread is done.

Spring Semester 2021 2

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Parallel Programming

3 Thread states

If we want to be able to talk about the effects of different thread operations, we need some notion of thread states. In
short, a Java thread typically goes through the following states:

e Non-Existing: Before the thread is created, this is where it is. We don’t know too much about this place, as
it’s not actually on our plane of reality, but it’s somewhere out there.

e New: Once the Thread object is created, the thread enters the new state.

¢ Runnable: Once we call start() on the new thread object, it becomes eligible for execution, and the system
can start scheduling the thread as it wishes.

e Blocked: When the thread attempts to acquire a lock, it goes into a blocked state until it has obtained the lock,
upon which it returns to a runnable state. In addition, calling the join() method will also transfer a thread
into a blocked state.

e Waiting: The thread can call wait() to go into a waiting state. It’ll return to a runnable state once another
thread calls notify () or notifyA11() and the thread is removed from the waiting queue.

e Terminated: At any point during execution, we can use interrupt () to signal the thread to stop its execution.
It will then transfer to a terminated state. Note that when the thread is in a runnable state, it needs to check
whether its interrupted flag is set itself; it won’t transfer to the terminated state automatically. Of course,
exiting the run method is equivalent to entering a terminated state. Once the garbage collector realizes that
the thread has been terminated and is no longer reachable, it will garbage collect the thread and return it to a
non-existing state, completing the cycle.

4 Data Races

A data race is a specific kind of race condition that is better described as a simultaneous access error, although nobody
uses that term. There are two kinds of data races:

e When one thread might read an object field at the same moment that another thread writes the same field.

e When one thread might write an object field at the same moment that another thread also writes the same field.

class C {
private int x = 0;
private int y 0;

void £() {
x = 1; //line A

y = 1; //line B

}

void g() {
int a = y; //line C
int b = x; //line D
assert (b >= a);

}

The code has data races, but it doesn’t occur, which can be proven by contradiction.

5 Important to Remember

5.1 Speedup

Where T is the sequential time (Time with one processor) and Tp with the time with P processors.

Reasons why the program is nevertheless slower:

Additional overheads caused by inter-thread dependencies, creating threads, communicating between them, and
memory-hierarchy issues can greatly limit the speedup we gain from adding more processors.

Spring Semester 2021 3

ETH

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Parallel Programming
5.2 Amdahl
e Fixed workload and upper bound on the speedup achievable when increasing the number of processors at our
disposal.

e Let f denote the non-parallelizable, serial fraction of the total work done in a program, and P the number of
processors at our disposal. Then, the following inequality holds:

1
Sp < -
f+

e If P is infinity, then:
5o <
o f

How to derive it:

T=T,+1T,

Where T is the total time, T} is the sequential time, and 7}, is the parallel time. T, = % If you have more than
one processor, you can rewrite the function to:

T,
T=T,+-2
p

_ Wseq + Wpar
- Whar
Waeq + 222

We know that Wyeq + Wpar = 1. So we can rewrite the function to:

Sp

1 1

Wpar —7
Wieq + 2222 f 4 21

5.3 Gustafson

e We increase the problem size as we improve the resources at our disposal. We consider the time interval to be
fixed and look at the problem size.

e Let f denote the non-parallelizable, serial fraction of the total work done in the program, and P the number of
processors at our disposal. Then, we get:

Sp=f+P1l-f)=P—-f(P—-1)

5.4 Workspan

In a graph:
e Work: all jobs summed up

e Span: Longest critical path

5.5 Divide and Conquer with ExecutorService

“Java class MaxTask implements Callable int 1; int h; int[] arr; ExecutorService ex;

public MaxTask(ExecutorService ex, int lo, int hi, int[] arr) // ... public Integer call() throws Exception //
Check base case int size = h - I; if (size == 1) return arr[l]; // Split work int mid = size / 2; MaxTask m1 = new
MaxTask(ex, 1, 1 + mid, arr); MaxTask m2 = new MaxTask(ex, 1 + mid, h, arr); // Start subtasks FuturejInteger; f1
= ex.submit(m1); Futurejlnteger; 2 = ex.submit(m2); // Combine results try return Math.max(fl.get(), f2.get());
catch (Exception e) return 0;

public static void main(String[] args) int[] arr = new int[] 15, 7, 9, 8, 4, 22, 42, 13; ExecutorService ex =
Executors.newFixedThreadPool(8); // Attention, has to be a minimum number of threads that are needed —;, otherwise
you have an endless loop MaxTask top = new MaxTask(ex, 0, arr.length, arr); FuturejInteger; max = ex.submit(top);
try System.out.println(max.get()); catch (Exception e) // something ex.shutdown();

Spring Semester 2021 4

1

ETH

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Parallel Programming

6 Using Recursive Task in Java

To avoid ”knowing” how many threads you need, you can use Recursive Task:

class MaxForkJoin extends RecursiveTask<Integer> {
int 1;
int h;
int [] arr;

public MaxForkJoin(int lo, int hi, int[] arr) {
this...
}

public Integer compute() {
//Check base case
int size = h - 1;
if (size == 1) {
return arr([1l];
} //split work
int mid = size / 2;
MaxForkJoin ml new MaxForkJoin(l, 1 + mid, arr);

MaxForkJoin m2 = new MaxForkJoin(l + mid, h, arr);
//Run subtasks

ml.fork();

int max2 = m2.compute();

int maxl = ml.join();

//Combine results
return Math.max(fl.get (), f2.get());

}

public static void main(Stringl[] args) {
int[] arr = new int[] {15, 7, 9, 8, 4, 22, 42, 13};
MaxForkJoin top = new MaxTask (0, arr.length, arr);
ForkJoinPool jfp = new ForkJoinPool ();
int res = fjp.invoke (tp);
System.out.println(res);

Note the following similarities:

e Instead of extending Thread, we extend RecursiveTaskT; (with return value) or RecursiveAction (without

return value).
e Instead of overriding run, we override compute.
e Instead of calling start, we call fork.

e Instead of a topmost call to run, we create a ForkJoinPool and call invoke.

Also, note that in the case of RecursiveTask|T}, join now returns a result.

7 Throughput

1

Throughput ~
b max(computationtime(stages))

8 Latency

Time to perform a single computation, including wait time resulting from resource dependencies.
balanced if the latency remains constant over time.

A pipeline is

Spring Semester 2021

N

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Parallel Programming

9 MPI

9.1 Synchronous, asynchronous, blocking, non-blocking

e Synchronous + blocking: try to call somebody until he answers.

Synchronous + non-blocking: try to call, if the other person does not pick up, I do something else.

Asynchronous + blocking: wait until your crush texts you back.

Asynchronous + non-blocking: send an E-Mail and continue working until you get a response.

In the actor model, messages are sent in an asynchronous, non-blocking fashion. The sender places the message
into the buffer of the receiver and continues execution. In contrast, when the sender sends synchronous messages,
it blocks until the message has been received.

MPI collects processes into groups, where each group can have multiple colors. A group paired with its color
uniquely identifies a communicator. Initially, all processes are collected in the same group and communicator
MPI_.COMM_WORLD. Within each communicator, a process is assigned a unique identifier, called the rank.

public void Send(
Object buf, //Ptr to data to be sent
int offset,
int count, //number of items to be sent
Datatype datatype, //datatype of items
int dest, //destination process id
int tag //data id tag

)

public void Recv(
Object buf,
int offset,
int count, // Number of items to be received
Datatype datatype, // Datatype of items
int dest, // Source process id
int tag //Data id tag
)

10 Transactional Memory

Definition 3.7.1 (Transactional Memory): Transactional Memory is a programming model whereby loads and stores
on a particular thread can be grouped into transactions. The read set and write set of a transaction are the set of
addresses read from and written to, respectively, during the transaction. A data conflict occurs in a transaction if
another processor reads or writes a value from the transaction’s write set or writes to an address in the transaction’s
read set. Data conflicts cause the transaction to abort, and all instructions executed since the start of the transaction
(and all changes to the write set) to be discarded.

Transactions run in isolation: while a transaction is running, effects from other transactions are not observed. A
good analogy is the one of a snapshot: transactional memory works as if a transaction takes a snapshot of the global
state when it begins and then operates on that snapshot.

11 Important Code
11.1 Barrier

public class Barrier {
private Semaphore mutex;
private Semaphore barrierl;
private Semaphore barrier2;

Spring Semester 2021 6

N

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Parallel Programming

private volatile int count = 0;
private final int n;

Barrier (int n) {
mutex = new Semaphore (1);
barrierl = new Semaphore (0);
barrier2 = new Semaphore(1);

this.count = 0;
this.n = n;

}

void await () throws InterruptedException {
mutex.acquire () ;
++count;
if (count == n) {
barrier2.acquire();
barrierl.release();
}

mutex.release () ;

barrierl.acquire();
barrierl.release();

mutex.acquire () ;

-—-count;

if (count == 0) {
barrierl.acquire();
barrier2.release();

}

mutex.release () ;

barrier2.acquire();
barrier2.release () ;

11.2 Semaphore

public class Semaphore {
private volatile int count;
private Object monitor = new Object ();

public Semaphore(int count) {
this.count = count;

}

public void acquire() throws InterruptedException {
synchronized (monitor) {
while (count <= 0)
monitor.wait () ;
--count;
}
}

public void release() {

Spring Semester 2021

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Parallel Programming

synchronized (monitor) {
++count ;
monitor.notify () ;

}

11.3 PetersonLock

class PetersonLock {
volatile boolean flag[] = new boolean[2];
volatile int victim;

public void Acquire(int id) {

flagl[id] = true;

victim = id;

while (flag[1-id] && victim == id);
}

public void Release(int id) {
flaglid] = false;
}

11.4 Filterlock

int[] level (#threads), int[] victim(#threads)

lock (me) {
for (int i=1; i<mn; ++i) {
level[me] = 1i;
victim[i] = me;
while (exists(k '= me): levell[k] >= i && victim[il]
}
}

unlock (me) {
level[me] = O0;
}

Filterlock is not fair.

11.5 BakeryLock

class BakeryLock {
AtomicIntegerArray flag;
AtomicIntegerArray label;
final int n;

BakeryLock (int n) {

this.n = n;
flag = new AtomicIntegerArray(n);
label = new AtomicIntegerArray(m);

}

int MaxLabel () {

== m){};

Spring Semester 2021

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Parallel Programming

int max = label.get (0);
for (int i = 1; i < n; ++i)

max = Math.max(max, label.get(i));
return max;

}
boolean Conflict(int me) {
for (int i = 0; i < n; ++i)
if (i != me && flag.get(i) != 0) {
int diff = label.get(i) - label.get(me);
if (diff < 0 || diff == 0 && i < me)

return true;

return false;

}

public void Acquire(int me) {
flag.set(me, 1);
label.set (me, MaxLabel() + 1);
while (Conflict(me));

}

public void Release(int me) {
flag.set(me, 0);

}
}
11.6 TAS
boolean TAS(memref s) {
if (mem([s] == 0) {
mem[s] = 1;
return true;
} else {

return false;
}
}

Init (lock) {
lock = 0;
Acquire(lock) {
while (!TAS(lock)); //wait

}
Release(lock) {
lock = 0;
}
}
11.7 CAS

int CAS(memref a, int old, int newValue) {
0ldVal = meml[al;
if (old == oldVal) {
mem[a] = newValue

}

Spring Semester 2021

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Parallel Programming

return oldVal;

}
Init (lock) {
lock = 0;
Acquire (lock) {
while (CAS(lock, 0, 1) !'= 0); //wait
}

Release (lock) {
CAS(lock, 1, 0); //ignore result
}

11.8 TASLock

public class TASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock () {
while (state.getAndSet (true)){}
}

public void unlock () {
state.set (false);

}

11.9 TATASLock

public class TATASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
do {
while(state.get()) {}
} while (!state.compareAndSet(false, true))

Spring Semester 2021

10

	Creating a Thread
	Joining threads
	Thread states
	Data Races
	Important to Remember
	Speedup
	Amdahl
	Gustafson
	Workspan
	Divide and Conquer with ExecutorService

	Using Recursive Task in Java
	Throughput
	Latency
	MPI
	Synchronous, asynchronous, blocking, non-blocking

	Transactional Memory
	Important Code
	Barrier
	Semaphore
	PetersonLock
	Filterlock
	BakeryLock
	TAS
	CAS
	TASLock
	TATASLock

