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1 Coupling

Coupling is the measure of the degree of interdependence between modules. A good software design will
have low coupling.

1.1 Types of Coupling

• Data coupling - Modules exchange elements, and the receiving end uses all of them.

• Procedural coupling

• Class coupling

1.2 Data Coupling

Dependency between modules occurs by passing only data, making them data coupled. Components are
independent and communicate through data.
Problems:

• Changes in data representation

• Unexpected side effects

• Concurrency

Example: customer billing system

• Access on public variables

Spring 2024 2



Rigorous Software Engineering

• Hide implementation details behind the interface (make private)

• Don’t give links, copy references

1.2.1 Facade Pattern

• Restricts and simplifies access

• Provides a single, simplified interface

1.2.2 Flyweight Pattern

• Maximizes sharing of immutable objects

• Invariant: if two objects are structurally equal, they are the same object
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1.3 Procedural Coupling

Modules are coupled to other modules whose methods they call.
Problems:

• Changing a signature in the callee requires changing the caller

• Callers cannot be reused without callee modules

Approach:

• Moving code may reduce procedural coupling

• Duplicating functionality

1.3.1 Observer Pattern

The Observer Pattern defines one-to-many dependency between objects, so when one object changes state,
all of its dependents are notified and updated automatically.
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1.4 Class Coupling

Inheritance couples the subclass to the superclass.
Solution:

• Delegation can be used to avoid coupling through inheritance

• Use type declarations as generic as possible

• Use interfaces (Instead of TreeMap, just use Map, the most general supertype)

1.4.1 Abstract Factory Pattern

Situation: Construction of families of objects.
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Java Implementation:

interface MealFactory {

Pizza createPizza(); // no inheritance needed

Burger createBurger(); // no inheritance needed

}

Vegan Meal Factory Implementation:

public class VeganMealFactory implements MealFactory {

@Override

public Pizza createPizza() {

return new VeganPizza();

}

@Override

public Burger createBurger() {

return new VeganBurger();

}

}

Non-Vegan Meal Factory Implementation:
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public class NonVeganMealFactory implements MealFactory {

@Override

public Pizza createPizza() {

return new NonVeganPizza();

}

@Override

public Burger createBurger() {

return new NonVeganBurger();

}

}

1.5 Adaptation

1.5.1 Strategy Pattern

The Strategy Pattern is a design pattern that allows defining a family of algorithms, encapsulating each
one, and making them interchangeable.

1.5.2 Visitor Pattern

The Visitor pattern is a behavioral design pattern that lets you separate algorithms from the objects on
which they operate.

2 Documentation

2.1 Why?

Essential vs Incidental Properties

• Stable Properties: Should not change during software evolution, ensuring consistent behavior.

• Unstable Properties: Can change without affecting core functionality, used to improve performance,
readability, or adaptability.

2.2 What?

• How to use the code - document the interface.

• How the code works - document the implementation.

3 Testing

3.1 Test Stages

• Parameterized Unit Tests
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• Functional Testing

• Structural Testing

4 Analysis

Join is the least upper bound.

4.1 Analysis Math

• Partial order: binary relation on a set with properties.

– Reflexive

– Transitive

– Anti-symmetric
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Fixed point iff f(x) = x
Post-fixed point iff f(x) ⊑ x

∀z ∈ A : α(F (γ(z))) ⊑A F ′(z) (4.1)
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If not monotone:
∀z ∈ A : F (γ(z)) ⊑C γ(F ′(z)) (4.2)

5 Analysis Intervals

[a, b]∇i[c, d] = [e, f ] (5.1)

where:

if c < a, then e = −∞, else e = a

if d > b, then f = ∞, else f = b

6 Pointer Analysis

Flow-sensitive: respects the program control flow.
Flow-insensitive: assumes all execution orders are possible.
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