
Rigorous Software Engineering

Rigorous Software Engineering

Gnkgo, Computer Science, Bsc 6. Semester

Spring 2024 1



Rigorous Software Engineering

1 Coupling

Coupling is the measure of the degree of interdependence between modules. A good software design will
have low coupling.

1.1 Types of Coupling

• Data coupling - Modules exchange elements, and the receiving end uses all of them.

• Procedural coupling

• Class coupling

1.2 Data Coupling

Dependency between modules occurs by passing only data, making them data coupled. Components are
independent and communicate through data.
Problems:

• Changes in data representation

• Unexpected side effects

• Concurrency

Example: customer billing system

• Access on public variables

Spring 2024 2



Rigorous Software Engineering

• Hide implementation details behind the interface (make private)

• Don’t give links, copy references

1.2.1 Facade Pattern

• Restricts and simplifies access

• Provides a single, simplified interface

1.2.2 Flyweight Pattern

• Maximizes sharing of immutable objects

• Invariant: if two objects are structurally equal, they are the same object

Spring 2024 3



Rigorous Software Engineering

1.3 Procedural Coupling

Modules are coupled to other modules whose methods they call.
Problems:

• Changing a signature in the callee requires changing the caller

• Callers cannot be reused without callee modules

Approach:

• Moving code may reduce procedural coupling

• Duplicating functionality

1.3.1 Observer Pattern

The Observer Pattern defines one-to-many dependency between objects, so when one object changes state,
all of its dependents are notified and updated automatically.

Spring 2024 4



Rigorous Software Engineering

1.4 Class Coupling

Inheritance couples the subclass to the superclass.
Solution:

• Delegation can be used to avoid coupling through inheritance

• Use type declarations as generic as possible

• Use interfaces (Instead of TreeMap, just use Map, the most general supertype)

1.4.1 Abstract Factory Pattern

Situation: Construction of families of objects.

Spring 2024 5



Rigorous Software Engineering

Java Implementation:

interface MealFactory {

Pizza createPizza(); // no inheritance needed

Burger createBurger(); // no inheritance needed

}

Vegan Meal Factory Implementation:

public class VeganMealFactory implements MealFactory {

@Override

public Pizza createPizza() {

return new VeganPizza();

}

@Override

public Burger createBurger() {

return new VeganBurger();

}

}

Non-Vegan Meal Factory Implementation:

Spring 2024 6



Rigorous Software Engineering

public class NonVeganMealFactory implements MealFactory {

@Override

public Pizza createPizza() {

return new NonVeganPizza();

}

@Override

public Burger createBurger() {

return new NonVeganBurger();

}

}

1.5 Adaptation

1.5.1 Strategy Pattern

The Strategy Pattern is a design pattern that allows defining a family of algorithms, encapsulating each
one, and making them interchangeable.

1.5.2 Visitor Pattern

The Visitor pattern is a behavioral design pattern that lets you separate algorithms from the objects on
which they operate.

2 Documentation

2.1 Why?

Essential vs Incidental Properties

• Stable Properties: Should not change during software evolution, ensuring consistent behavior.

• Unstable Properties: Can change without affecting core functionality, used to improve performance,
readability, or adaptability.

2.2 What?

• How to use the code - document the interface.

• How the code works - document the implementation.

3 Testing

3.1 Test Stages

• Parameterized Unit Tests

Spring 2024 7



Rigorous Software Engineering

• Functional Testing

• Structural Testing

4 Analysis

Join is the least upper bound.

4.1 Analysis Math

• Partial order: binary relation on a set with properties.

– Reflexive

– Transitive

– Anti-symmetric

Spring 2024 8



Rigorous Software Engineering

Fixed point iff f(x) = x
Post-fixed point iff f(x) ⊑ x

∀z ∈ A : α(F (γ(z))) ⊑A F ′(z) (4.1)

Spring 2024 9



Rigorous Software Engineering

If not monotone:
∀z ∈ A : F (γ(z)) ⊑C γ(F ′(z)) (4.2)

5 Analysis Intervals

[a, b]∇i[c, d] = [e, f ] (5.1)

where:

if c < a, then e = −∞, else e = a

if d > b, then f = ∞, else f = b

6 Pointer Analysis

Flow-sensitive: respects the program control flow.
Flow-insensitive: assumes all execution orders are possible.

Spring 2024 10



Rigorous Software Engineering

Spring 2024 11


	Coupling
	Types of Coupling
	Data Coupling
	Facade Pattern
	Flyweight Pattern

	Procedural Coupling
	Observer Pattern

	Class Coupling
	Abstract Factory Pattern

	Adaptation
	Strategy Pattern
	Visitor Pattern


	Documentation
	Why?
	What?

	Testing
	Test Stages

	Analysis
	Analysis Math

	Analysis Intervals
	Pointer Analysis

