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1 Coupling

Coupling is the measure of the degree of interdependence between modules. A good software design will
have low coupling.

1.1 Types of Coupling

e Data coupling - Modules exchange elements, and the receiving end uses all of them.
e Procedural coupling

e Class coupling

Best

Data Coupling

Stamp Coupling

Control Coupling

External Coupling

Common Coupling

Content Coupling [ETYA¥Y

1.2 Data Coupling

Dependency between modules occurs by passing only data, making them data coupled. Components are
independent and communicate through data.
Problems:

e Changes in data representation
e Unexpected side effects
e Concurrency

Example: customer billing system

e Access on public variables
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e Hide implementation details behind the interface (make private)

e Don’t give links, copy references

1.2.1 Facade Pattern

e Restricts and simplifies access

e Provides a single, simplified interface

Module 1

v

Module 2

Module 1

Module 2

1.2.2 Flyweight Pattern

e Maximizes sharing of immutable objects

e Invariant: if two objects are structurally equal, they are the same object
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1.3 Procedural Coupling

Modules are coupled to other modules whose methods they call.
Problems:

e Changing a signature in the callee requires changing the caller
e Callers cannot be reused without callee modules

Approach:
e Moving code may reduce procedural coupling

e Duplicating functionality

1.3.1 Observer Pattern

Observer Pattern (cont’d)

aConcreteSubject concreteObserverl concreteObserver2
J_‘ setState( ... )
notify( )
update( ) -
) getState() L
update( ) T
- ) getState( )

The Observer Pattern defines one-to-many dependency between objects, so when one object changes state,
all of its dependents are notified and updated automatically.
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Event-Based Communication: Discussion

Strengths Weaknesses
= Loose (dynamic) coupling via events * Loss of control
= Strong support for reuse: plugin new components - What components will respond to an event?
by registering them for events - In which order will components be invoked?
= Change: add, remove, and replace components - Are invoked components finished?
with minimum effect on other components Loss of control complicates ensuring correctness
Variants

= Register only for specific event types — fine-grained control over messages to receive

= |ntroduce an intermediary message broker or event bus — filter, log, prioritize, ... (search for Publish-
Subscribe pattern)

1.4 Class Coupling

Inheritance couples the subclass to the superclass.
Solution:

e Delegation can be used to avoid coupling through inheritance
e Use type declarations as generic as possible

e Use interfaces (Instead of TreeMap, just use Map, the most general supertype)

= Multiple inheritance can be replaced by subtyping and delegation

‘ Person | ‘ Employee l ’ Person ‘ ‘ IEmployee ‘
Z> Zé extends A A implements
{ (inheritance) (subtyping)
multiple
Programmer | inheritance Programmer Employee

1.4.1 Abstract Factory Pattern

Situation: Construction of families of objects.
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Abstract Factory Pattern

Client

client uses abstract types of products, factory;
concrete factory passed in (choice externalized)

ConcreteFactoryl

createProductA(): ProductA
createProductB(): ProductB

!

AbstractFactory2

createProductA(): ProductA
createProductB(): ProductB

i

ConcreteFactory2

Concrete Concrete
ProductB1 ProductAl
e.g. Button, ProductB ProductA
Image % Z%
e.g. Concrete Concrete create concrete
SwingButton, ProductB2 ProductA2 products
Swingimage |

Java Implementation:

interface MealFactory {

Pizza createPizza(); // no inheritance needed

Burger createBurger(); // no inheritance needed

}

Vegan Meal Factory Implementation:

public class VeganMealFactory implements MealFactory {

@0verride

public Pizza createPizza() {
return new VeganPizza();

}

@0verride

public Burger createBurger() {
return new VeganBurger();

+
}

Non-Vegan Meal Factory Implementation:

createProductA(): ProductA
createProductB(): ProductB
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public class NonVeganMealFactory implements MealFactory {
@0verride
public Pizza createPizza() {
return new NonVeganPizza();

}

@0verride
public Burger createBurger() {
return new NonVeganBurger() ;

¥

1.5 Adaptation
1.5.1 Strategy Pattern

The Strategy Pattern is a design pattern that allows defining a family of algorithms, encapsulating each
one, and making them interchangeable.

1.5.2 Visitor Pattern

The Visitor pattern is a behavioral design pattern that lets you separate algorithms from the objects on
which they operate.

2 Documentation

2.1 Why?
Essential vs Incidental Properties
e Stable Properties: Should not change during software evolution, ensuring consistent behavior.

e Unstable Properties: Can change without affecting core functionality, used to improve performance,
readability, or adaptability.

2.2 What?

e How to use the code - document the interface.

e How the code works - document the implementation.

3 Testing

3.1 Test Stages

e Parameterized Unit Tests
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e Functional Testing

e Structural Testing

Testing Strategies: Summary

Functional testing
= Goal: Cover all the requirements
= Black-box

Random testing
= Goal: Cover corner cases
= Black-box

4 Analysis

Join is the least upper bound.

4.1 Analysis Math

Structural testing

e Partial order: binary relation on a set with properties.

— Reflexive
— Transitive

— Anti-symmetric

Goal: Cover all the code
White-box
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Bounds: example

b e @c upper bounds {b, c}: none
a. lower bounds {b, c}: aand L

M{b, c}: a

— @

no T element

Fixed point iff f(z) ==z
Post-fixed point iff f(z) C x

Vze A:a(F(y(2))) Ca F'(2) (4.1)
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Approximating a Function: Definition 2

So we have the 2 functions:
F:C—C
FF:A— A

But what if o and y do not form a Galois Connection ? For
instance, a. is not monotone. Then, we can use the
following definition of approximation:

VzeA:F(y(z) = y(F(2))

If not monotone:

Vz € A: F(v(2) Ec v(F'(2)) (4.2)
5 Analysis Intervals
[CL, b]vz [67 d} = [6, f] (51)
where:
if c < a, then e = —o0, else e =a

ifd>0b, then f =00, else f=0

6 Pointer Analysis

Flow-sensitive: respects the program control flow.
Flow-insensitive: assumes all execution orders are possible.
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p =4d

p := alloc!
p = g
p.f := g

p := g.f!

compare two pointers
create new object
assign pointers
pointer heap store

pointer heap load
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