ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Rigorous Software Engineering

Rigorous Software Engineering

Gnkgo, Computer Science, Bsc 6. Semester

Spring 2024 1

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Rigorous Software Engineering

1 Coupling

Coupling is the measure of the degree of interdependence between modules. A good software design will
have low coupling.

1.1 Types of Coupling

e Data coupling - Modules exchange elements, and the receiving end uses all of them.
e Procedural coupling

e Class coupling

Best

Data Coupling

Stamp Coupling

Control Coupling

External Coupling

Common Coupling

Content Coupling [ETYA¥Y

1.2 Data Coupling

Dependency between modules occurs by passing only data, making them data coupled. Components are
independent and communicate through data.
Problems:

e Changes in data representation
e Unexpected side effects
e Concurrency

Example: customer billing system

e Access on public variables

Spring 2024 2

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Rigorous Software Engineering

e Hide implementation details behind the interface (make private)

e Don’t give links, copy references

1.2.1 Facade Pattern

e Restricts and simplifies access

e Provides a single, simplified interface

Module 1

v

Module 2

Module 1

Module 2

1.2.2 Flyweight Pattern

e Maximizes sharing of immutable objects

e Invariant: if two objects are structurally equal, they are the same object

Spring 2024

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Rigorous Software Engineering

1.3 Procedural Coupling

Modules are coupled to other modules whose methods they call.
Problems:

e Changing a signature in the callee requires changing the caller
e Callers cannot be reused without callee modules

Approach:
e Moving code may reduce procedural coupling

e Duplicating functionality

1.3.1 Observer Pattern

Observer Pattern (cont’d)

aConcreteSubject concreteObserverl concreteObserver2
J_‘ setState(...)
notify()
update() -
) getState() L
update() T
-) getState()

The Observer Pattern defines one-to-many dependency between objects, so when one object changes state,
all of its dependents are notified and updated automatically.

Spring 2024 4

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Rigorous Software Engineering

Event-Based Communication: Discussion

Strengths Weaknesses
= Loose (dynamic) coupling via events * Loss of control
= Strong support for reuse: plugin new components - What components will respond to an event?
by registering them for events - In which order will components be invoked?
= Change: add, remove, and replace components - Are invoked components finished?
with minimum effect on other components Loss of control complicates ensuring correctness
Variants

= Register only for specific event types — fine-grained control over messages to receive

= |ntroduce an intermediary message broker or event bus — filter, log, prioritize, ... (search for Publish-
Subscribe pattern)

1.4 Class Coupling

Inheritance couples the subclass to the superclass.
Solution:

e Delegation can be used to avoid coupling through inheritance
e Use type declarations as generic as possible

e Use interfaces (Instead of TreeMap, just use Map, the most general supertype)

= Multiple inheritance can be replaced by subtyping and delegation

‘ Person | ‘ Employee l ’ Person ‘ ‘ IEmployee ‘
Z> Zé extends A A implements
{ (inheritance) (subtyping)
multiple
Programmer | inheritance Programmer Employee

1.4.1 Abstract Factory Pattern

Situation: Construction of families of objects.

Spring 2024 5

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Rigorous Software Engineering

Abstract Factory Pattern

Client

client uses abstract types of products, factory;
concrete factory passed in (choice externalized)

ConcreteFactoryl

createProductA(): ProductA
createProductB(): ProductB

!

AbstractFactory2

createProductA(): ProductA
createProductB(): ProductB

i

ConcreteFactory2

Concrete Concrete
ProductB1 ProductAl
e.g. Button, ProductB ProductA
Image % Z%
e.g. Concrete Concrete create concrete
SwingButton, ProductB2 ProductA2 products
Swingimage |

Java Implementation:

interface MealFactory {

Pizza createPizza(); // no inheritance needed

Burger createBurger(); // no inheritance needed

}

Vegan Meal Factory Implementation:

public class VeganMealFactory implements MealFactory {

@0verride

public Pizza createPizza() {
return new VeganPizza();

}

@0verride

public Burger createBurger() {
return new VeganBurger();

+
}

Non-Vegan Meal Factory Implementation:

createProductA(): ProductA
createProductB(): ProductB

Spring 2024

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Rigorous Software Engineering

public class NonVeganMealFactory implements MealFactory {
@0verride
public Pizza createPizza() {
return new NonVeganPizza();

}

@0verride
public Burger createBurger() {
return new NonVeganBurger() ;

¥

1.5 Adaptation
1.5.1 Strategy Pattern

The Strategy Pattern is a design pattern that allows defining a family of algorithms, encapsulating each
one, and making them interchangeable.

1.5.2 Visitor Pattern

The Visitor pattern is a behavioral design pattern that lets you separate algorithms from the objects on
which they operate.

2 Documentation

2.1 Why?
Essential vs Incidental Properties
e Stable Properties: Should not change during software evolution, ensuring consistent behavior.

e Unstable Properties: Can change without affecting core functionality, used to improve performance,
readability, or adaptability.

2.2 What?

e How to use the code - document the interface.

e How the code works - document the implementation.

3 Testing

3.1 Test Stages

e Parameterized Unit Tests

Spring 2024 7

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Rigorous Software Engineering

e Functional Testing

e Structural Testing

Testing Strategies: Summary

Functional testing
= Goal: Cover all the requirements
= Black-box

Random testing
= Goal: Cover corner cases
= Black-box

4 Analysis

Join is the least upper bound.

4.1 Analysis Math

Structural testing

e Partial order: binary relation on a set with properties.

— Reflexive
— Transitive

— Anti-symmetric

Goal: Cover all the code
White-box

Spring 2024

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Rigorous Software Engineering

Bounds: example

b e @c upper bounds {b, c}: none
a. lower bounds {b, c}: aand L

M{b, c}: a

— @

no T element

Fixed point iff f(z) ==z
Post-fixed point iff f(z) C x

Vze A:a(F(y(2))) Ca F'(2) (4.1)

Spring 2024 9

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Rigorous Software Engineering

Approximating a Function: Definition 2

So we have the 2 functions:
F:C—C
FF:A— A

But what if o and y do not form a Galois Connection ? For
instance, a. is not monotone. Then, we can use the
following definition of approximation:

VzeA:F(y(z) = y(F(2))

If not monotone:

Vz € A: F(v(2) Ec v(F'(2)) (4.2)
5 Analysis Intervals
[CL, b]vz [67 d} = [6, f] (51)
where:
if c < a, then e = —o0, else e =a

ifd>0b, then f =00, else f=0

6 Pointer Analysis

Flow-sensitive: respects the program control flow.
Flow-insensitive: assumes all execution orders are possible.

Spring 2024 10

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Rigorous Software Engineering

p =4d

p := alloc!
p = g
p.f := g

p := g.f!

compare two pointers
create new object
assign pointers
pointer heap store

pointer heap load

Spring 2024

11

	Coupling
	Types of Coupling
	Data Coupling
	Facade Pattern
	Flyweight Pattern

	Procedural Coupling
	Observer Pattern

	Class Coupling
	Abstract Factory Pattern

	Adaptation
	Strategy Pattern
	Visitor Pattern

	Documentation
	Why?
	What?

	Testing
	Test Stages

	Analysis
	Analysis Math

	Analysis Intervals
	Pointer Analysis

