
1 The Digital Image
Problems: Transmission interference, compression ar-
tifacts, spilling, scratches, sensor noise, bad contrast
and resolution, motion blur
Pixel: Discrete samples of an continuous image func-
tion.
Rolling Shutter effect produced by sequential rea-
dout of pixels while a digital camera is moving. Result
is pixels read at different times are sequentially mi-
saligned, causing image-level distortions dependent on
camera (or object) movement.
Charge Coupled Device (CCD)

Has an array of photosites (a bucket of electrical charge)
that charge proportional to the incident light intensity
during exposure. ADC happens line by line.
Bloooming: oversaturation of finite capacity photosi-
tes causes the vertical channels to "flood"(bright vertical
line)
Bleeding/Smearing: While shifting down, the pixels
above get some photons on bright spot with electronic
shutters.
Dark Current: CCDs produce thermally generated
charge they give non-zero output even in darkness (fluc-
tuates randomly) due to spontaneous generation of elec-
trons due to heat → cooling.
can be avoided by cooling, worse with age.
CMOS:

Same sensor elements as CCD, but each sensor has its
own amplifier → faster readout, less power consump-
tion, cheaper, more noise.
more noise, lower sensitivity
vs CCD cheaper, lower power, less sensitive, per pi-
xel amplification random pixel access, no blooming, on
chip integration

Approach Prism Mosaic Wheel
# Sensors 3 1 1
Separation High Avg. Good
Cost High Low Average
Framerate High High Low
Artifacts Low Aliasing Motion
Bands 3 3 ≥ 3
Usage High-End Low-end Scientific

Sampling methods
Cartesian (grid), hexagonal, non-uniform
Quantization: Real valued function will get digital
values (integers). A lossy process (original cannot be re-
constructed). Simple version: equally spaced 2b = #bits
levels
Linear Interpolation:
p(t) = p0 + (t− t0) p1−p0

t1−t0
with t ∈ [t0, t1]

Bilinear Interpolation:

Resolution
• Image: px × px
• Geometric: #pixels per area
• Radiometric: #bits per pixel

Image noise: commonly modeled by additive Gaus-
sian noise: I(x,y) = f(x,y) + c, poisson noise (shot
noise for low light, depends on signal & aperture time),
multiplicative noise: I = f + f · c, quantization er-
rors, salt-and-pepper noise. SNR or peak SNR is
used as an index of image quality c ∼ N(0,σ2),
p(c) = 1

σ
√

2π
·exp

(
− (c−µ)2

2σ2

)
, SNR: S = F

σ
where F =

1
XY

∑X

x=1
∑Y

y=1 f(x,y).

Color cameras
Prism need 3 sensors and good alignment
Filter mosaic coat □ directly on sensor
Wheel multiple filters in front of same sensor
New CMOS sensor layers that absorb color at dif-
ferent depths → better quality

2 Image Segmentation
Complete segmentation

Finite set of non-overlapping regions that cover the
whole image I =

⋃n

i=1 Ri and Ri∩Rj = ∅ ∀i, j, i ̸= j
Thresholding: simple segmentation by comparing
greylevel with a threshold to decide if in or out.
Chromakeying: when planning to segment, use spe-
cial backgroundcolor. (Problems variations due to ligh-
ting, noise, halo around foreground due to aliasing mi-
xed pixels due to motion blur(hard α-mask does not
work)) Iα = |I−g|> T

Receiver Operating Characteristic (ROC) analysis:
ROC curve characterizes performance of binary clas-
sifier Classification errors: False negative (FN), false
positives (FP)
ROC curve plots TP fraction T P

T P +F N
vs FP fraction

F P
F P +T N
Operating points: choose point with gradient

Pixel connectivity
also regions if x-connected
Connected component raster scanning: scanning
row by row, if foreground & label if connected to other
label, else give new label. (second pass to find equiva-
lent labels)
Improve: when region found, follow border, then car-

ry on (contour-based method)
Region growing

Start with seed point or region, add neighboring pixels
that satisfy a criteria defining a region until we include
no more pixels.
Seed region: by hand or automatically by conserva-
tive Thresholding
Inclusion criteria: greylevel thresholding, greylevel
distribution model (include if (I(x,y)−µ2)2 < (nσ)2

and update µ and σ after each iteration) color or tex-
ture information
Snakes: active contour, a polygon and each point
moves away from seed while criteria is met (can ha-
ve smoothness constraint) Iteratively minimize enery
function E = Etension + Estiffness + Eimage

Background subtraction
simple: Iα = |I − Ibg | < T better: Iα =√

(I− Ibg)T Σ−1(I− Ibg) where Σ is the background
pixel appearance covariance matrix, computed sepera-
tely for each pixel. (Mahalanobis Distance uses mean
instead of Ibg)
Morphological operators

Logical transformations based on comparison of neigh-
boring pixels. Inputs: Binary image, structuring ele-
ment S.
Erode: E = {x : x + s ∈ I,for every s ∈ S}
delete FG pixels with 8-connected BG pixels
Dilate: E = {x : x− s,y ∈ I and s ∈ S}
every BG pixels with 8-connected FG pixel make a FG pixel
Opening: (I⊖S)⊕S Closing: (I⊕S)⊖S
Uses: smooth regions, remove noise and artifacts.

3 Image Filtering
Operator * mapping image and kernel to images:
Iout = k ∗ Iin
Local:Iout[i, j] depends only on neighbors of Iin[i, j]
Associative: ((k1 ∗k2)∗ I) = (k1 ∗ (k2 ∗ I))
Shift invariant: shift(k ∗ I) = k ∗ shift(I)
Linear: k ∗ (αI1 + βI2) = α(k ∗ I1) + β(k ∗ I2)
Linear Combination of neighbors:∑

(i,j)∈ N(x,y)︸ ︷︷ ︸
neighborhood

K(x,y, i, j) I︸︷︷︸
Input

(x + i,y + j)

Filter at edges: clip filter (black), wrap around, copy
edge, reflect across edge, vary filter near edge
Correlation

I′(x,y) =
∑

(i,j)∈N(x,y) K(i, j)I(x + i,y + j)
I′ = K ◦ I e.g. template matching: search for best
match by minimizing mean squared error or maximi-
zing area correlation. (remove mean (from filter, from
image) to avoid bias)
Convolution

I′ = K ∗ I,I′(x,y) =
∑

(i,j)∈N(i,j) K(i, j)I(x− i,y− j)
if K(i, j) = K(−i,−j) =⇒
correlation = convolution
convoution = correlation + filter rotated 180°
Continuous: (f ∗g)(t)

=
∫ ∞

−∞ f(t̃)g(t− t̃)dt̃

=
∫ ∞

−∞ f(t− t̃)g(t̃)dt

Kernels
separable: if a kernel can be written as a product
of two simpler filters → computationally faster (fil-
ter P ×Q, image N ×M : (P + Q) ∗NM instead of
P QNM)
Separable filters can be written as K(m,n) =
f(m)g(n). For a rectangular neighborhood with size

(2M +1)×(2N +1), I′(m,n) = f * ( g * I(N(m, n)) )

I”(m,n) =
∑N

j=−N
g(j)I(m,n− j)

I’(m, n) =
∑N

j=−N
f(i)I′′(m− i,n)

Box filter: all same values normalized to sum = 1
Gaussian Kernel: K(x,y) = 1

2πσ2 e
− x2+y2

2σ2 is sepa-
rable, e.q. σ = 1
Gaussian Smoothing Kernel Top-5

• Rotationally symmetric
• has single lobe Neighbor’s influence decreases mono-

tonically
• Still one lobe in frequency domain ,No corruption

from high frequencies
• Simple relationship to σ
• Easy to implement efficiently

High Pass Filter: high pass filter detects edges High
Pass Filter Laplacian Operator

[
−1 −1 −1
−1 8 −1
−1 −1 −1

][
0 1 0
1 −4 1
0 1 0

]

Low Pass Filter: blurs (detects ßmooth"regions)
Gaussian Filter is a low pass filter, proof: Convolution
theorem: Fourier transform H of h is equal to F ·G If g
is Gaussian, its Fourier Transform G is also Gaussian.
Pointwise multiplication of F with G will keep the low
frequencies of F unchanged, while the high frequencies
will be multiplied by a low number, and therefore, they
will be removed.
Conversion: Subtracting one from central element of
low-pass filter gives a high-pass filter with inverted
sign, because.
(f−δ)∗a = f ∗a−δ∗a = f ∗a−a =−(a−(f ∗a)) Nor-
malize the low-pass kernel and then subtract one from
central element. Normalize low-pass filter, then sub-
tract the kernel from central element matrix. To get
the high pass filter, you do not need to normalize.

Band pass filter: do LPF and HPF with cutoffs
fLP < fHP f = cut of frequencies, cannot coincide
Filter image with high-pass and low-pass filter to get
band pass filter. Only works when you have an overlap in
frequencies. If no overlap: I ∗convolution (δ − fLP −fHP

) →
gap between is band filter.
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Band reject filter: do LPF and HPF with cutoffs
fLP > fHP

Image sharpening: increases high frequency com-
ponents to enhance edges: I′ = I + α|K ∗ I| K : high-
pass filter, α: scalar ∈ [0,1]

4 Features
Desirable properties: shift, rotation, scale, bright-
ness invariant
Edge Detection

How to tell if there is an edge? Local maxima of the
first derivative and the zero crossing of the second de-
rivative.
Edge detection filters:
Sobel:

Kx =

[
−1 0 1
−2 0 2
−1 0 1

]
, Ky =

[
−1 −2 −1
0 0 0
1 2 1

]
Prewitt:

Kx =

[
−1 0 1
−1 0 1
−1 0 1

]
, Ky =

[
−1 −1 −1
0 0 0
1 1 1

]
Roberts:
Kx =

[
1 0
0 −1

]
, Ky =

[
0 1
−1 0

]
Gradient Magnitude:

M(x,y) =
√

( ∂f
∂x

)2 + ( ∂f
∂y

)2

Gradient Angle:
α(x,y) = tan−1( ∂f

∂y
/ ∂f

∂x
)

Laplacian operator
detect discontinuities by considering second derivative[

0 1 0
1 −4 1
0 1 0

]
or

[
1 1 1
1 −8 1
1 1 1

]
are discrete space

approximations. Is isotropic(rotationally invariant), zero
crossings make edge locations. Sensitive to fine details
and noise (→ smoothing before applying).
blur image first (LoG)
Laplacian of Gaussian (LoG): convolve gaussian
blurring and laplacian operator in LoG operator (chea-

per) LoG(x,y) =− 1
πσ4 (1− x2+y2

2σ2 )e− x2+y2

2σ2

Canny Edge Detector: 5 Steps
1. smooth image with a Gaussian filter
2. compute gradient magnitude and angle using So-

bel/Prewitt/...
3. apply non-maximum suppression to gradient ma-

gnitude image (Quantize edge normal to one of four
directions: horizontal, +45°, vertical, -45°. If M(x, y))
smaller than either of its neighbors in edge normal di-
rection suppress, else keep

4. Double thresholding for intensity to detect
strong and weak edge pixels

5. Reject weak edge pixels not connected to strong
edge pixels

Hough Transform
Fitting a straight line to a set of edge pixels

Alternative parameterization:
xcos(θ) + y sin(θ) = ρ
(x−a)2 +(y−a)2 = r2 For circles: if r known: calcu-
late circles with radius r around edge pixels → inter-
section (local maxima) of circles gives center.
Where lots of them meet is the center of a circle. el-
se: use 3D hough transform with parameters (x0,y0, r)
Each point (xi,yi) in the xy-plane gives a sinusoid in
the θρ plane. Colinear points lying on the line give
curves intersecting at the same point in the polar pa-
rameter plane. Local maxima give significant lines.
Corner Detection

Edges are only well localized in one direction→ detect
corners.
Desirable properties: Acute localization, invariance
against shift, rotation, scale, brightness change, robust
against noise, high repeatability
Linear approximation for small ∆x∆y: (Taylor)
f(x + ∆x,y + ∆y)≈ f(x,y) + fx(x,y)∆x + fy(x,y)∆y

Local displacement sensitivity (Harris corners)

S(∆x,∆y) = (∆x∆y)
(∑

x,y∈window

[
f2

x fxfy

fxfy f2
y

])[
∆x
∆y

]
≈ SSD. Find points where min∆T M∆ is large for
||∆||= 1 i. e. maximize the eigenvalues of M
Harris cornerness: Measure of cornerness
C(c,y) = det(M)−k ∗ trace(M)2 = λ1λ2 + k(λ1 + λ2)
Robustness of Harris corner detector: Invariant
to brightness offset, invariant to shift and rotation but
not to scaling! λ1 >> λ2 → edge, λ1 and λ2 large →
corner, else → flat region.

not scale invariant:
Overcome issues: look for strong DoG response or
consider local maxima in position and scale space,
Gaussian weighing.
Lowe’s SIFT features

Look for strong responses of difference of Gaussians
(DoG) filter, only look at local maxima in both positi-
on and scale.

DoG: DoG(x,y) = 1
k
∗e

− x2+y2

(kσ)2 −e
− x2+y2

σ2 e.g. k =
√

2
Orientation: create histogram of local gradient directi-
ons computed at selected scale, assign canonical orien-

tation at peak of smoothed histogram. Get a SIFT de-
scriptor (threshold image gradients are sampled over 16 × 16
array of locations in scale space) and do matching with the-
se. Invariant to scale, rotation, illumination and view-
point. Limits local gradient

1. fails when intensity structure within window is
poor

2. fails when displacement is large (typical opera-
ting range is motion of 1 pixel per iteration!)

3. also brightness is not strictly constant in images
Solution: Pyramid, coarse to fine

5 Fourier Transformation
Aliasing: Happens when undersampling e.g. taking
every second pixel, else characteristic errors appear: ty-
pically small phenomena look bigger, fast phenomena
look slower. (e.g. wagon wheels backwards in movies,
checkerboards misrepresented)
Fourier Transform

Convolution, Filtering: The Fourier transform of
the convolution of two functions is the product of their
Fourier transform:
F ·G = U(f ∗∗g)
Convolution, Sampling: The Fourier transform of
the product of two functions is the convolution of the
Fourier transform.
F ∗∗G = U(f ·g)
Represent function on a new basis with basis elements
ei2π(ux+vy) = cos(2π(ux + vy)) + isin(2π(ux + vy))
F (f(x))(u) =

∫ ∞
−∞ f(x)e−i2πuxdx,

Inverse Fourier: f(x) =
∫ ∞

∞ F (u)ei2πuxdu Similar
for 2D
2D: F (f(x,y))(u,v) =

∫ ∞
−∞

∫ ∞
−∞ f(x,y)e−2πi(ux+vy)dxdy

For images: transformed image → F = U ∗f ← vec-
torized image, U: Fourier matrix
For discrete:
F (u,v) = 1

NM

∑N−1
x=0

∑M−1
y=0 f(x,y)e−2πi( ux

N
,

vy
M

)

1D-periodic function: f(t) =
∑∞

n=−∞ cne
i2πnt

T ,

cn = 1
T

∫ T
2

− T
2

f(t)e
−i2πnt

T dt

Properties of Fourier transform
Linearity: F (ax(t) + by(t)) = aX(t) + bY (t)
Time Shift: F (x(t± t0)) = X(t)e±i2πft0

Frequency Shift: F (ei2πf0tx(t)) = X(f −f0)
Scaling: F (x(at)) = 1

|a| X
(

f
a

)
Convolution: F (x(t)∗y(t)) = X(f) ·Y (f)
Duality: F (X(t))←→ x(−f)
Sampling:
A sampling function s(t) which is an impulse train with
period T and its Fourier transform S(f):
s(t) =

∑∞
n=−∞ δ (t−nT )

S(f) = 1
T

∑∞
n=−∞ X(f − n

T
) where δ(∗) Dir.-delt. f.

A continuous signal can be sampled by multiplying
with s(t) : xs(t) = x(t)s(t)To compute the Fourier Trans-
form of xs(t), we can use the convolution theorem:

F (xs(t)) = X(t) ∗ S(t) = 1
T

∑∞
n=−∞

δ
(

f − n
T

)
∗ X(t) =

1
T

∑∞
n=−∞

X(f − n
T

)

Sampling in 2D: sample2D(f(x,y)) =∑∞
i=∞

∑∞
j=∞ f(x,y) ∗ δ(x − i,x − j) =

f(x,y)
∑∞

i=∞

∑∞
j=∞ δ(x− i,x− j)

DFT: The 2D DFT of an image I(x,y)
is given by: F (u,v) =

∑N−1
x=0

∑N−1
y=0 I(x,y) ·

e−j2π( ux
N

+ vy
N ) F (f(x,y))(

∑∞
i=∞

∑∞
j=∞ δ(x − i,x −

j))F (f(x,y)) ∗ F (
∑∞

i=∞

∑∞
j=∞ δ(x − i,x − j)) =∑∞

i=∞

∑∞
j=∞ F (u− i,v− j)

Dirac Delta Function:
δ(K−k) =

∫ ∞
−∞ e2πi(K−k)xdx∫ ∞

−∞ δ(t)dt = 1 and δ(t) =
{

0 for x ̸= 0
und. for x = 0

Sifting Property:∫ ∞
−∞ f(t) · δ(x−a)dx = f(a)

Dirac Comb:
IIIT (x) =

∑∞
n=−∞ δ(t−nT )sampling = product with this

Box Filter: h(x) =
{

1
T

, if |x| ≤ T
2

0, otherwise.
frecon = (h∗g)(x) =
T

∫ ∞
−∞ h(y)

∑∞
i=−∞ f(iT )δ(x−y− iT )dy

Triangle Filter: tri(t) =
{

1−|t|, if |t| ≤ 1
0, otherwise.

Fourier transform of important functions
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Nyquist Sampling theorem
The sampling frequency must be at least twice the hig-
hest frequency ws ≥ 2w If not the case: band limit before
with low-pass filter. Perfect reconstruction: sinc(x) = sin(πx)

πx

Why should this hold? Function f(t), sampling functi-
on S∆t(t) with sampling frequency ws. Fourier transform
of the sampled function can be derived as F̃ (u) =
F (f(t) ·S∆t(t))
= F (u)∗S∆t(w)
=

∫ ∞
−∞ F (t̃)S∆t(w− t̃)dt̃

=
∫ ∞

−∞ F (t̃) 1
∆T

∑∞
n=−∞ δ(w− t̃− n

∆T
)dt̃

= 1
∆T

∑∞
n=−∞ F (w−nws).

If we want to reconstruct the signal f(t) from F and
S∆t, F (w) cannot overlap with its neighbors F (w−ws)
and F (w + ws). Thus, ws should be larger than wn.
Highest frequency of f(t).
Image restoration problem:

f(x)→ h(x)→ g(x)→ h̃(x)→ f(x)
The inverse kernel h̃(x) should compensate h(x). May
be determined by: F (h̃)(u,v) ·F (h(u,v)) = 1
Problems: Convolution with kernel k may cancel out
some frequencies & noise amplification.
Avoid: Regularization: F (h̃)(u,v) = F (h)

|F (h)|2+ϵ
avoid

singularities

6 Unitary Transforms
Vectorization: interpret image as vector row-by-ow:
I =

[
1 2 3
4 5 6

]
→

[
1 2 3 4 5 6

]
linear image processing: can be written as g⃗ = Hf⃗
Image collection (IC): F = [f1,f2...fn]
Autocorrelation matrix Rff = F ·F H

N
its Eigenvec-

tor with largest Eigenvalue is direction of largest va-
riance among pictures.
Unitary transform: for transform A iff AH = A−1 if
real-valued → orthonormalevery unitary transform is a rotati-
on + sign flip, length conserved
Energy conservation: ||C⃗||2 = C⃗HC = f⃗HAHAf =
||f⃗ ||2

Karhunen-Loeve Transform
Same as PCA. Order by decreasing eigenvalues
Energy concentration property: no other unitary
transform packs as much energy in the first J coeffi-
cients (for arbitrary J) and mean squared approximation
error by choosing only first J coefficients is minimized.
Optimal energy concentration of KLT consider
truncated coefficient vector b⃗ = IJ c⃗ (IJ : identity matrix
with first J columns) Energy in first J coefficients for an
arbitrary transform A : E = T r(Rbb) = T r(IJ RccIJ ) =
T r(IJ ARff AHIJ ) =

∑
k=0 J = 1aT

k Rff a∗
k where aT

k
is k− th row of A. Lagrangian cost function to en-
force unit-length basis vectors: L = E +

∑J−1
k=0 λk(1−

aT
k a∗

k) =
∑J−1

k=0 aT
k Rff a∗

k +
∑J−1

k=0 λk(1−aT
k a∗

k)
Differentiating L with respect to aj : Rff a∗

j =
λia

∗
j ∀j < J necessary condition

Simple recognition
SSD between images, best match wins very expensive,
since need to correlate with every image

Principle Component analysis PCA

Linear dimension reduction method
Optimization goal:
argmin

||w||2=1,z

∑n

i=1 ||xi−ziw||22

The optimal solution is given by
zi = w⊤xi.
Substituting gives us:
ŵ = argmax||w||2=1 w⊤Σw

Where Σ = 1
n−1

∑n

i=1 xix
⊤
i is the empirical covarian-

ce. Closed form solution given by the principal ei-
genvector of Σ, i.e. w = v1 for λ1 ≥ ·· · ≥ λd ≥ 0:
Σ =

∑d

i=1 λiviv
⊤
i

For k > 1 we have to change the normalization to
W ⊤W = I then we just take the first k principal ei-
genvectors so that W = [v1, . . . ,vk].
Steps:

• Center image
• Normalize data and subtract mean necessary to en-

sure first principal component describes direction of ma-
ximum variance. Otherwise, first principal component
would correspond to mean

• Get Eigenvectors and values from covarian-
ce matrix or do SVD (Number of EV ≤
min(#pixels,#datasamples) )

• Sort Eigenvalues and vectors in descending order
• Get j largest components
• Construct projection matrix from selected j Ei-

genvectors (Uj)
• Transform dataset by multiplying with projecti-

on matrix
PCA through SVD

• The first k col of V where X = USV ⊤.
• first principal component eigenvector of data co-

variance matrix with largest eigenvalue
• covariance matrix is symmetric → all principal

components are mutually orthogonal
Kernel PCA

Σ = 1
n

∑n

i=1 xix
⊤
i = X⊤X⇒ kernel trick:

α̂ = argmaxα
α⊤K⊤Kα

α⊤K α
Closed form solution:
α(i) = 1√

λi
vi K =

∑n

i=1 λiviv
⊤
i ,λ1 ≥ ·· · ≥ 0

A point x is projected as: zi =
∑n

j=1 α
(i)
j k(xj ,x)

Uses of PCA: lossy compression by keeping only the
most important k components.

• take the original image I
• apply PCA on the original image, if you do not

have a PCA already.
• Compress the image by projecting the image in-

to the PCA subspace. (I−µ)Uk where Uk is the

matrix of the k Principal components.
• apply the inverse PCA transformation from

point 2. on the compressed data to get the re-
constructed image. I ·UT

k + µ
PCA is just a linear transformation from one coordi-
nate system to another, which can easily be ündoneïn
a lossless manner by reversing the transformation. The
dimensionality reduction aspect comes when you start
dropping the last principal components, which are the
dimensions which capture the least variance.
Calculate units of PCA

Exercise:
Assume dataset of 1000 images, with size
50×50

1. dataset mean = 50×50 = 2500
2. Truncated eigenmatrix 2500×K
3. Compressed images 1000×K
4. IK = (I− Ī)Φ
5. Î = IKΦT + Ī

Face recognition eigenfaces and face detection.
Eigenspace matching

Do PCA with mean subtraction and get closest rank-k
approximation of database images (eignfaces)
For a new query: normalize, subtract mean (of database)
project to subspace then do similarity matching with
eigenfaces.
Fischerfaces:

Find directions where ratio between / within indi-
vidual variance is maximized. Linearly project to
basis where dimension with good signal: noise ratio is
maximized.
Wopt = argmax

W

det(W RBW H )
det(W RW W H ) ,Rb =∑

RB

∑
i=1 cNi(µ⃗i − µ⃗)(µ⃗i − µ⃗)H ,RW =∑c

i=1
∑

Γl∈Class
(Γl−µi)(Γl−µi)H

Fischer linear discriminant analysis (LDA): ma-
ximize between class scatter, while minimizing within
less scatter
JPEG Compression

Divide image into 8×8 block:

Discrete cosine transform (DCT): uses only real
values and is easier to compute than a Fourier trans-
form.
DC: First coefficient (general intensity)

ZigZag:
Quantization Table: Divide by this value, round to
nearest integer, lossy

7 Pyramids and Wavelets
Scale-space representations

From an original signal f(x) generate a parametric fa-
mily of signals f+(x) where fine-scale information is

successively suppressed e.g. successive smoothing or image
pyramids (smooth & downsample)
Applications: Search for correspondence (look at coar-
se scale, then refine with finer scale) edge tracking coarse to
fine estimation control of detail and computational cost
(e.g. textures)
Example: CMU face detection: need different scales
for template to match.
Gaussian Pyramid: Image pyramid with Gaussian
for smoothing
Laplacian Pyramid: Preserve difference between up-
sampled Gaussian pyramid level and Gaussian pyra-
mid level. Like a band-pass filter - each level repres-
ents spatial frequencies that are largely unrepresented
at other layers Compression.
Haar transform: has two major sub-operations:

1. scaling captures info at different frequencies
2. translation captures info at different locations

8 Optical Flow
Apparent motion of brightness patterns use extracted
feature points and commpute their velocity vectors pro-
jection of 3D velocity vectors on I
Problem: cannot distingish motion from changing
lighting! also estimate observed projected motion field
normal flow not always well defined
Key assumptions:
Brightness constancy: Projection of the same point looks
the same in every frame.
Small motion: Points do not move far
Brightness constancy constraint:
I(x + dx

dt
δt,y + dy

dt
δt, t + δt) = I(x,y, t) I = Intensity

Small motion → can linearize with Taylor expansion:
I(x + u, y + v, t + 1) = I(x, y, t) + Ixu + Iyv + It
dI
dt

= ∂I
∂x

dx
dt

+ ∂I
∂y

dy
dt

+ ∂I
∂t

≈ 0 or shorthand Ix · u + Iy · v +
It ≈ 0
move I − t on one side, vectorize unknowns. For LK,
sum up over a window of pixes

Derivation: We assume small displacement
and use Taylor-Expansion to get:
I(x + dx

dt
δt,y + dy

dt
δt, t + δt) ≈ I(x,y, t) +

∂I
∂x

( dx
dt

δt) + ∂I
∂y

( dy
dt

δt) + ∂I
∂t

(δt).
Subtracting the given equation from this
equation, we get:
0 = ∂I

∂x
( dx

dt
δt) + ∂I

∂y
( dy

dt
δt) + ∂I

∂t
(δt),

which can be written as:
0 = Ix( dx

dt
δt) + Iy( dy

dt
δt) + It(δt)

Finally, we divide by δt, and get:
0 = Ixu + Iyv + It,
as desired.
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Sample Exercise:
You have captured a video at 25 frames per
second of a car moving at 18 kilometers per
hour. The side of the car is parallel to the
image plane and the car is moving straight.
The car is 2.4 meters long, but in your video
it is 192 pixels long. Assume that your optical
flow algorithm breaks down for pixel displace-
ments that are larger than 1 pixel.
Start with a coarse image → compute flow →
rescale → initialize with the last estimate →
repeat.
18 km/h equals 5 meters per second, which
equals 20 cm per frame, i.e. 1

12 of the length
of the car. 1

12 of 192 pixels is 16 pixels. Going
from 16 to 8 to 4 to 2 to 1 leads to 5 levels.

Aperture problem: The aperture problem refers to
the fact that when flow is computed for a point that
lies along a linear feature, it is not possible to determi-
ne the exact location of the corresponding point in the
second image. Thus, it is only possible to determine
the flow that is normal to the linear feature. 1 equati-
on, 2 unknowns cannot determine exact location, take

normal flow.

Horn-Schunck
Add additional smoothness constraint:
es =

∫ ∫
(u2

x + u2
y + v2

x + v2
y)dxdy close ≈ parallel

Besides OF constraint:
ec =

∫ ∫
(Ixu + Iyv + It)2dxdy Minimize es + λec

Lukas-Kanade
Works well for textured area, corners. Not for ho-
mogeneous areas, edges since M is singular when all
gradient vectors point in the same direction.
Assume spatial coherence: same displacement for
neighborhood (N×M window) → linear least squares
problem:[

Ix(x1, y1) Iy(x1, y1)
... ...

Ix(xNM , yNM ) Iy(xNM , yNM )

][
u
v

]
=

−

[
It(x1, y1)

...
It(xNM , yNM )

]
=⇒

[∑
IxIx

∑
IxIy∑

IyIx

∑
IyIy

][
u
v

]
=

−

[∑
IxIt∑
IyIt

]
When solvable? AT A invertible, eigenvalues λ1,λ2
large, λ1

λ2
small

Errors: motion is large(r than a pixel)
→ iterative refinement and coarse-to-fine estimation.
A point does not move like its neighbors
→ motion segmentation.
Brightness constancy does not hold:

→ exhaustive neighborhood search with normalized corrolati-
on.
The matrix M = AT A is singular (for only edges),
meaning all gradient vectors point in the same direc-
tion.
→ No unique solution. KLT feature tracker: to find
patches where LSE well-behaved → LK-flow
Iterative refinement: Estimate velocity, warp using
estimate, refine,...
Coarse-to-Fine Estimation: Image Pyramid. Start
small, compute OF, rescale, take larger and initialize
with last estimate
Applications: Image stabilization (get flow between
two frames and warp image using same OF for all pixels s.st.
OF close to 0) frame interpolation, video compression,
object tracking, motion segmentation
Parametric (Global) Motion models They offer
more constrained solutions than smoothness (Horn-
Schunck) and cover larger area than translational
model (LK). An example is:
Affine motion: Ix(a1 + a2x + a3y) + Iy(a4 + a5x +
a6y) + It ≈ 0

SSD tracking: For large displacements: match tem-
plate against each pixel in small area around, match
measure can be (normalized) correlation or SSD choo-
se max. as match (sub-pixel also possible)
Bayesan Optical Flow: Some low-level motion illu-
sions can be explained by adding an underlying model
to LK-tracking e.g. brightness constancy with noise.
Parametric Motion can be better:

• more constrained solutions than smoothness
(Horn-Schunck)

• intergration over a larger area than a translation-
only model can accmmodate (Lucas-Kanade)

9 Video Compression
Interlaced video format: 2 temporally shifted half
images
→ increase frequency, decrease spatial resolution → not pro-
gressive
Lossy video compression: take advantage of red-
undancy spatial correlation between pixels, temporal
correlation between frames
→ basically drop perceptually unimportant details
with optical flow: Encode optical flow based on pre-
vious frame can cause blocking artifacts (if OF of 2
pixels point to same coordinate, there will be a hole
somewhere), does not work well for lots of movement,
fast movement and scene changes.
If temporal redundancy fails → use motion-compensated pre-
diction
Types of coded frames:
I-Frame: Intra-coded frame, coded independently of
all others
P-Frame: Predictively coded frame, based on pre-
viously coded frame
B-Frame: Bi-directionally coded frame, based on pre-
vious & future

Block-Matching Motion Estimation:
Is a type of temporal redundancy reduction
Motion Estimation Algorithm ME

1. Partition frame into blocks (e.g. 16×16 pixels)
2. For each block, find the best matching block in

reference frame
Metrics for best match: sum of differences or squared sum
of diff.
Candidate blocks: All blocks in e.g. 32 × 32 pixel area
Search strategies: Full search, partial (fast) search
Motion Compensation Algorithm MC Use the
best matching of reference frame as prediction of
blocks in current frame
→ gives motion vectors & MC prediciotn error or residual (en-
code with conventionl image coder)
Motion Vector: relative horizontal & vertical offsets
of a given block from one frame to another
Not limited to integer-pixel offsets, can use half-pixel ME to
capture sub-pixel motion.
Half-pixel ME (coarse-fine) algorithm:

1. Coarse step: find best integer move
2. Fine step: refine by spatial interpolation and

best-matching
Advantages and disadvanages
+ good, robust performance, one MV per block→ use-
ful for compression, simple periodic structure (GoP)
- assumes translational motion (fails for complex mo-
tion)
→ codes these frames/blocks without prediction produces
blocking artifacts
MPEG-GoP IBBPBBPBBI dependencies between
frames
Scalable Video Coding:

Decompose video into multiple layers of prioritized im-
portance: e.g.
temporal scalability: Include B-frames or not
spatial scalability: Base resolution + upsampling difference
SNR scalability: Base with coarse quatizer + fine quantizer
Benefits: Adapting to different bandwidths, facilita-
tes error resiliency by identifying more and less im-
portant bits.

10 CNN
Gradient Descent

Converges only for convex case. O(n∗k ∗d)

wt+1 = wt−ηt ·∇ℓ(wt)

For linear regression:

||wt−w∗||2 ≤ ||I−ηX⊤X||top||w0−w∗||2

ρ = ||I − ηX⊤X||top conv. speed for const. η. Opt. fi-
xed η = 2

λmin+λmax
and max. η≤ 2

λmax
. Momentum:

wt+1 = wt +γ∆wt−1−ηt∇ℓ(wt) Learning rate ηt gua-
rantees convergence if

∑
t
ηt = ∞ and

∑
t
η2

t < ∞
Data-Driven Approach argminθL(y,f(x,θ)) with
x input, θ kernel weights, f(x,θ) prediction, y target,
L loss function.

Softmax Classifier scores = unnormalized log pro-
babilities of different classes. Maximize correct proba-
bility:
P (Y = k |X = xi) = efk(xi,θ)∑

j
e

fj (xi,θ) through the softmax

loss:
L(y,f(x,θ)) = −

∑N

i=1 logP (Y = yi | X = xi). Thus
minimize negative log likelihood of correct class.
Logistic Classifier Softmax with only two classes
yi ∈ {0,1}

L(y,f(x,θ)) =
1
N

yi log ef(xi,θ)

1+ef(xi,θ) + (1−yi) log 1
1+ef(xi,θ)

Activation Functions
Activation Functions Introduce non-linearity.
Sigmoid 1

1+e−x , saturated neurons kill the gradient,
outputs not zero-centered, compute expensive
tanh tanh(x), zero centered, still kills gradients
ReLU max(0,x), does not saturate, very computatio-
nally efficient, converges much faster in practice, ac-
tually more biologically plausible, not zero-centered
output, not differentiable

• Leaky ReLU: max(0.1x,x)

• ELU:
{

x x≥ 0
a(ex−1) x < 0

• Maxout: max(w⊤
1 x + b1,w⊤

2 x + b2)

Multilayer Perceptron (MLP)
Stack several linear classifiers with activation function
between layers to get universal approximator.
Gradient Descent θt+1 = θt + λ∇Lθ with λ as lear-
ning rate.
SGD Approximate loss sum by considering only a
batch.
Forwardpropagation W ∈ Rout×in Input layer :
v(0) = [x;1] Output layer : f = W (L)v(L−1) Hidden
layer : z(l) = W (l)v(l−1) & output with activation and
bias v(l) = [φ(z(l));1].
Given from L+1, compute, given from FP.

(∇W (L) l)⊤ = ∂l

∂f

∂f

∂W (L) = ∂l

∂f
v(L−1)

(∇W (L−1) l)⊤ = ∂l

∂f

∂f

∂z(L−1)
∂z(L−1)

∂W (L−1) = · · ·· · ·v(L−2)

(∇W (L−2) l)⊤ = ∂l

∂f

∂f

∂z(L−1)
∂z(L−1)

∂z(L−2)
∂z(L−2)

∂W (L−2)

Where error δ(l) = φ(z(l))⊙ (W (l+1)⊤δ(l1)) and
∇W (l) l = δ(l)v(l−1)⊤ to calculate the gradient.
CNN

Motivation
1. Sparse interactions
2. Parameter sharing
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3. Equivariant representations (change the position
of an object should not change the classification
of it).

4. Hierarchical perception (low-level features to
high-level concepts)

CNN-Formulas
C = channel F = filterSize inputSize = I padding =
P stride = S

• Output size l = I+2P −K
S

+ 1
• Output dimension = l× l×m
• Inputs = W ∗H ∗D ∗C ∗N
• Trainable parameters = F ∗F ∗C ∗#filters
• Dimensions: f(W ) × f(H) × m,f(i) =

i+2P −Ki
S

+ 1
• Params: p = (KW ·KH ·C+1) ·m, +1=̂ Bias

Pooling Layers Pool units to decrease width of out-
put layer. Introduces translation invariance and helps
to extract dominant features.
ResNet v(l+1) = v(l) + r(v(l)) with skip connections
to rely less on depth.
Classification f(xi,θ) as the score. Take the class
with larger score and use softmax as loss.
Regression f(xi,θ) as the value. Can be used for clas-
sification by comparing value. Loss could be MSE. Can
be used for depth estimation.
Pixel Loss, semantic segmentation
L=−

∑
i

∑
c

yic log(pic)
Optical Flow Loss L=

∑
i
((ui− ûi)2 + (vi− v̂i)2)

GAN Generate data through randomized input.

11 Graphics Pipeline
1. Modelling Transform (Object to World Space)
2. Viewing Transform (World to Camera Space)
3. Primitive Processing (Output primitives from

transformed vertices)
4. 3D-Clipping (Remove primitives outside the fru-

stum)
5. Screen-Space Projection (Project from 3D to 2D

screen space)
6. Scan Conversion (Discretize continuous primiti-

ves)
7. Lighting, Shading, Texturing
8. Occlusion Handling (Update Color using Z-

buffer)
9. Display

Programmer’s View:

Attributes

Vertex Shader

Varying
(per vertex)

Interpolation

Varying
(per fragment)

Fragment Shader

Fragment Color

Uniforms (constants)

Vertex Processing: Per-vertex operations e.g Trans-
forms and Lighting flow control. This is done with
the Vertex Shader. Input: uniforms and per-vertex
attributes. Output: Varying per vertex
Fragment Processing: Per-fragment operations e.g.
Shading and Texturing Blending. This is done with
the Fragment Shader. Input: Uniform and varying
per-fragment attributes. Output: Per-fragment color
Inputs/Outputs:

• Uniforms: (V/F) global constant inputs e.g. light
position, texture map etc.

• Varying: (V/F) value passed from vertex to frag-
ment shader by being interpolated across primi-
tives first. e.g interp. pixel color

12 Colors and Light
CIE Experiment: subject is shown two stimuli at
the same time, one with the pure spectral color, the
other a linear combination of the three primaries
(RGB). Subject can control how much primaries were
dimmed and asked to match the second stimulus to
the first. → find how humans perceive color. Can also
add red light to reference if impossible to match →
negative red values.
xyY color space: x,y control chormacity, Y is lumi-
nance.

Color Gamut Linear combina-
tion of 3 colors in △.
Purple Line Non-spectral co-
lors between 380 and 770.
Dominant Wavelength From
color through whitepoint, boun-
dary intersection.
Saturation Distance from color
to white point.
Isoline Line with constant di-
stance to border (w/o PL).

RGB → XYZ[
x(λ)
y(λ)
z(λ)

]
=

[
2.36 −0.515 0.005
−0.89 1.426 0.014
−0.46 0.088 1.009

][
r(λ)
g(λ)
b(λ)

]
XYZ → xyY

x = X

X + Y + Z
y = Y

X + Y + Z
Y = Y X = xY

y

Z = (1−x−y)Y
y

RGB → CMY [
C
M
Y

]
=

[
1
1
1

]
−

[
R
G
B

]

RGB → YIQ[
Y
I
Q

]
=

[
0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.523 0.311

][
R
G
B

]
RGB → HSV

min = min(R, G, B)
max = max(R, G, B)
V = max;
If (max != 0) S = (max - min) / max
Else S = 0;
H = Hue (V, S, R, G, B); // proced .

RGB: Same color space as XYZ. Can be transformed
with matrix multiplication. Additive color model,
good for combining colored lights. Used in monitors/-
displays.
CMY: Inverse of RGB. Subtractive color model. Used
in passive color systems (printers).

YIQ: Luminance Y, In-phase I (orange-blue), Qua-
drature Q (purple-green) components. Advantages for
natural and skin colors. Used in NTSC US-color TV.
HSV: Hue: base color, Saturation: purity of color, Va-
lue: brightness. Intuitive for interactive color picking.
Used by designers in Photoshop.
Lab: CIE does not provide perceptually correct di-
stances. The Lab color space is perceptually uniform,
meaning that small changes in the euclidean distance
correspond to small changes in perceived color.

13 Transformations
Linear functions: f(ax + by) = af(x) + bf(y)
Homogeneous Coordinates: Raise dimensionality
by 1 and set its coordinate to 1.(

x y
)T
↔

(
xw yw w

)T
w ∈ R\{0}

This allows non-linear transformations to still be de-
noted as matrices.

Translation:

[
1 0 tx

0 1 ty

0 0 1

]
Scale:

[
sx 0 0
0 sy 0
0 0 1

]
Rotations: Not commutative. R−1 = RT .

3D-rotate(x):

1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1


3D-rotate(y):

 cos(θ) 0 sin(θ) 0
0 1 0 0

−sin(θ) 0 cos(θ) 0
0 0 0 1


3D-rotate(z):

cos(θ) −sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1


To rotate around arbitrary axes, see Quaternions.
Shear:1 0 shx 0

0 1 shy 0
0 0 1 0
0 0 0 1

1 shx 0 0
0 1 0 0
0 shz 1 0
0 0 0 1

 1 0 0 0
shy 1 0 0
shz 0 1 0
0 0 0 1



Rigid Transformation: Transformation that preser-
ves vector length. (Only rotation & translation)
Change Coordinate Systems:

p′ =
[

r1 r2 r3 t
0 0 0 1

]
p where r1,r2,r3 are the old

axes in the new system and t is the translation from
new origin to old origin.
Transform normals with:
p′ = Mp⇒ n′ = (M−1)T n

Quaternions
Rotations and translations efficiently.

z = a + bi + cj + dk(
u v w

)T
↔ 0 + ui + vj + wk

Properties: i2 = j2 = k2 =−1 ijk =−1
ij = k ki = j jk = i
ji =−k ik =−j kj =−i
Vector form: z = s + v v is a vector, s is a scalar
Product: (s1 + v1) · (s2 + v2) = s1s2−v1 ·v2 + s1v2 +
s2v1 + v1×v2
Conjugate: (s1 + v1) = s1−v1, zz = ∥z∥2

Inverse: z−1 = z
∥z∥2 , 1 = z−1z = zz−1

Rotation: Vector a = (x,y,z)T , rotate around u
1. (x,y,z)T → Quaternion p = 0 + xi + yj + zk
2. Compute q = cos( θ

2 ) + sin( θ
2 ) u

∥u∥ and q−1 = q

3. p′ = qpq−1

Projections
Perspective Projection:

You can imagine the projection plane to be the screen
space and the origin the camera.
xp = dx/z yp = dy/z z = d

Mper =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0



Triangle rule: xp/d = x/z
Parallel Projection: Set the coordinate of the or-
thogonal of the plane to 0. Assuming the projection
plane is x,y, we set z to 0:

Mort =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


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14 Shading and Lighting
Flux: Φ(A)[ J

s
= W ] total energy/photons passing

through space A per time unit.
Radiosity: B(x) = dΦ(A)

dA(x) [ W
m2 ] Flux per unit area lea-

ving surface
Irradiance: E(x) = dΦ(A)

dA(x) [ W
m2 ] Flux per unit area ar-

riving at surface
(Rad.) Intensity: I(−→ω )[ W

sr
] Flux per solid angle ema-

nating from point source
Radiance L(x,−→ω ) = d2Φ(A)

cosθdA(x)d−→ω [ W
m2sr

] Intensity per
unit area
BRDF

Bidirectional Reflectance Distribution Function enco-
des behavior of light that bounces off a surface, given
incoming direction ωi, how much gets reflected in out-
going direction ωo.
Reflection function:
fr(x,−→ωi,

−→ωr) = dLr(x,−→ωr)
Li(x,−→ωi)cosθid−→ωi

ωi is the incoming light vector, ωr the reflected. θi:
angle of incoming vector to the surface normal.
fr is constant for diffuse reflections. Reflection
Equation: Reflected radiance due to illumination
from all directions.
Lr(x,−→ωr) =

∫
H2 fr(x,−→ωi,

−→ωr)Li(x,−→ωi)cosθid
−→ωi

For diffuse reflections, fr is constant.
Lr(x) = frEi(x) = fr

∫
H2 Li(x,−→ωi)cosθid

−→ωi

Types of reflections:

Additionally there is also retro-reflective, which reflects
the light back to the source in a way similar to glossy.
Phong Illumination Model

This is a local illumination model: does not consider
indirect light bouncing of from others objects that are
hitting the object, unlike the global illumination mo-
del. It is approximated by ambient lighting. Light shi-
nes into the surface but is viewed as an outgoing vector
in the model.
Ambient: Light that shines independent of viewpoint
& angle. (Imagine it as object glowing)
Diffuse: General direction of the light which is reflec-
ted regardless of viewer’s position.
Specular: Shiny light reflection

I = Iaka︸︷︷︸
Ambient

+Ip

(
kd(N ·L)︸ ︷︷ ︸
Diffusion

+ks(R ·V )n︸ ︷︷ ︸
Specular

)

The material parameters are ka,kd,ks,n. Ia, Ip are
light intensities, N normal surface, L the light ray, R
the reflection ray, and V the viewing ray. R,V,L,N are
all normalised.

R = 2(N·L)N−L
∥R∥

V = Eyeposition−Objectposition
∥V ∥

Attenuation Quadratic due to spatial radia-
tion. fatt = (d2

L)−1 or often used in OpenGL:
fatt = min((c1 + c2dL + c3d2

L)−1,1)
Cook-Torrence For metal objects which replaces the
specular term. Has self-shadowing effects.
Ashikhmin Anisotropic lighting model.
Shading

Flat: 1 color per primitive, per triangle
Gouraud: Linearly interpolate vertex intensities

1. Calculate vertex normal by averaging face nor-
mals.

2. Evaluate illumination model for each vertex
3. Interpolate vertex colors bilinearly on the scan

line.

Ia = I1 − (I1 − I2) (y1−ys)
(y1−y2) Ib = I1 − (I1− I3) (y1−ys)

(y1−y3)

Ip = Ib− (Ib− Ia) (xb−xp)
(xb−xa)

Problems: Perspective Distortion. Orientation Depen-
dence due to interpolation. Shared Vertices.
Phong Shading: Linearly interpolate normals, color
per pixel, problem: normal not defined/representative

1. Calculate vertex normal by averaging face nor-
mals.

2. Interpolate the normal barycentric
3. Evaluate illumination model per fragment in tri-

angle

nx = λana + λbnb + λcnc λa = ∆xbc
∆abc

λb =
∆xac
∆abc

λc = 1−λa−λb

Transparency
Alpha Blending: is the linear interpolation of co-
lor front-to-back (obj. 1 is closer than obj. 2): I =
I1α1 + α2I2(1−α1)
α = 1: opaque. α = 0: transparent.
We render back to front, beginning with opaque object.
Can cause issues with overlapping objects. Solution is
depth peeling. We do multiple passes where each pass
renders the next closest fragment.

15 Geometry & Textures
Challenges, texture: Noisy captured images, visual
redundancy over space, callibration inaccuracies, re-
construction inaccuracies, occlusions, visual redundan-
cy over time geometric noise (reconstruction noise & cal-
librating noise)
Ways to encode geometry:
Explicit: Vertex positions are given explicitly → good
for sampling, bad for testing whether inside or outside
object.
Implicit: Vertex positions fulfil some equation.→ good
to test inside/outside object, compact description,
tough to model complex shapes, finding all points is
expensive.
Geometry representations implicit

• Algebraic surfaces: surface is zero set of polynomial
in x, y, z

• Constructive solid geometry: build complicated sha-
pes via Boolean operations

• Blobby surfaces: gradually blend surfaces together (le-
vels of sum of gaussians)

• Blending distance functions: a distance function gi-
ves distance to closest point on object

• Level set methods: store a grid of values approxima-
ting function

• Fractals and L-systems: no precise definition, struc-
tures that exhibit self-similarity, details at all scales,
self-similarity, details at all scales

• Signed Distance Function
Geometry representations explicit

• Point cloud: list of points (x, y, z), often augmented
with normals can represent any gemetry, need large da-
taset, hard to do processing/simulation, hard to draw if
undersampled

• Polygonal mesh: Store vertices and polygons, easier
processing simulation, more cimplicated DS, most com-
mon

• Triangle mesh: store vertices as triplets (x, y, z) tri-
angles as triples of indices (i, j, k)

• Subdivision surfaces: smooth out a control curve, in-
sert new vertex at each edge midpoint and update vertex
positions according to fixed rule

Mesh Datastructure
Triangle List: List containing (v1,v2,v3) where vi is
the coordinates ⇒ easy query, but redundant.
Indexed Face Set: List containing vertex ids and
another list of vertices with their coordinates ⇒ less
storage space.
Polygonal Mesh

Set of connected polygons where every edge belongs to
at least one polygon and the intersection of two poly-
gons either empty, a vertex or and edge.
Manifolds: surface homeomorphic to a disk, closed
manifolds divides space into two.
Texture Mapping

Enhance details without increasing geometric com-
plexity. Desirable properties: low distortion, bijective
mapping, efficiency.
Parametrization: Map (u,v) coordinates of texture

to 3D vertex coordinates. E.g. for spheres
[

u
v

]
7→[

sin(u)sin(v)
cos(v)

cos(u)sin(v)

]
Texture Filtering: To prevent aliasing, we should
apply low pass filter to the texture.
Maps:

• Light map: simulates effect of a local light source
• Environment map: render reflective object effi-

ciently
• Bump mapping
• Normal mapping
• Mipmapping

Bump Mapping: Perturbs surface normal. Encodes
height difference (grayscale) from mesh. Illusion of geo-
metry, but (self-)shadows and silhouette unchanged.
Normal mapping: Very similar to bump mapping
but now stored as (r,g,b) color ⇒ directional pertur-
bations. More detailed
Mipmapping: Store down-sampled versions of a tex-
ture using Gaussian Pyramid. Choose resolution based
on projected size of triangle. Use linear interpolation
between resolutions. Prevents aliasing!
Magnification: Pixel in texture image maps to area
larger than one pixel → Jaggies. Can be solved by bi-
linear interpolation.
Minification: Pixel in texture image maps to area
smaller than one pixel → moiré patterns. Solution:
mipmapping.

16 Signal Processing
Supersampling

We sample multiple times per pixel for the most ac-
curate color. Final color of pixel averaged from the
samples that fall into this pixel. We have different pat-
terns like uniform, jittering, stochastic, poisson.
Lose high frequency information.

17 Scan Conversion
Scan Conversion / Rasterisation: Convert vector-
based/geometric objects into pixel-based images. Cru-
cial for rendering graphics on computer screens.
Bresenham Line: Choose closest point at each inter-
sect with vertical pixel grid lines.
Implicit line equation: f(x,y) = ax + by + c = 0;
Last colored pixel:
p = (xp,yp); d = f(m) = f(xp + 1,yp + 1/2);
If d < 0 select lower pixel E else if d > 0 select upper
pixel NE.
For next pixel,
Case E: dnew = f(xp + 2,yp + 1/2) = a + d = d + δy;
Case NE:
dnew = f(xp + 2,yp + 3/2) = a + b + d = d + ∆y−∆x
Scan Conversion for Polygons:

• Most important graphics primitive
• CPU can process up to 50 mil triangles/s
• Straightforward approach: inside test for every

pixel but instead process scan-line after scan-line
Algorithm
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1. Calculate all intersections on a scan-line
2. Sort intersections by ascending x-coordinates
3. Fill all spans in between two consecutive inter-

section points if parity is odd

18 Bézier/Hermite Curves

Exercise: If Uniform Interval, just plug in va-
lues. If not replace t by x−xk

xk+1−xk

Spline desired properties:
Interpolation: Spline passes exactly through data points
Continuity: in C2

Locality: moving one point does nto affect whole curve
=⇒ impossible to have all at once
Cubic polynomials, interpolate + 1st derivate is given
tangent. Interpolates, not C2-continuous, global
Maps: R1→ R3 : x(u) = (x(u),y(u),z(u))T

R2→ R3 : x(u,v) = (x(u,v),y(u,v),z(u,v))T

Special cases of B-Spline Curves.
x(t) = b0Bn

0 (t) + · · ·+ bnBn
n(t)

where b0...bn are the control points.
n = 3 : x(t) = b0(1− t)3 + 3b1t(1− t)2 + 3b2t2(1− t) +
b3t3.
Derivative: d

dt
bn(t) = n

∑n

i=0

(
Bn−1

i−1 (t)−Bn−1
i (t)

)
bi,

which is a Bezier curve with degree n−1
Properties: design property: control points give
rough sketch, endpoint interpolation, variation dimi-
nishing property: intersection of straight line with
curve <= # control points.
Disadvantages: global support of basis functions
(changing one control point changes entire curve),
inserting control points expensive, lack of continuity
between different segments, adding new points increa-
ses the degree.
Bernstein Polynomial of degree n:
Bn

i (t) =
(

n
i

)
ti(1− t)n−i for 0≤ i≤ n zero else.

Global support, positive definite, partition of unity,
different degrees.
Derivative: d

dt
Bn

i (t) = n
(

Bn−1
i−1 (t)−Bn−1

i (t)
)

Binomial coefficient:(
n
i

)
= n!

i!(n−i)! for 0≤ i≤ n zero else.
DeCasteljau Algorithm: Recursive method for
computing a point on a bezier curve using a systolic
array in O(n2): Given n+1 control points b0, b1, . . . , bn

the recursion is defined as follows:

br
i (t) = (1− t)br−1

i (t) + tbr−1
i+1 (t)

b0
i (t) = bi

for r = 1, . . . ,n and i = 0, . . . ,n− r

Intuition: Corner cutting until only one line remains
whose intersection with the curve is the result.
Forward difference operator ∆ : ∆bj = bj+1− bj

Bezier curve derivative with ∆:
d
dt

bn(t) = n
∑n−1

j=0 ∆bj ·Bn−1
i

Recursive ∆r:
recursive: ∆rbj = ∆r−1bj+1−∆r−1bj

non-recursive: ∆rbi =
∑r

j=0

(
r
j

)
(−1)r−jbj+i

Higher order derivative of Bezier curve:
dr

dtr bn(t) = n!
(n−r)!

∑n−r

j=0 ∆rbjBn−r
j (t)

Piecewise Bezier Curves / Splines:

• Knots: u0 < ... < uL

• Intervals: [ui,ui+1]
• local parameter: t = u−ui

ui+1−ui
= u−ui

∆i

• Segment s(u) = si(t)
• a Bezier curve that is a function of the local pa-

rameter t
ds(u)

du
= dsi(t)

dt
dt
du

= 1
∆i

dsi(t)
dt

.
Enforce Continuity: Curve in [u0,u2] decomposed
to bezier segments b0, ..., bn in [u0,u1] and bn, ..., b2n

in [u0,u1], Cr −Continous if bn+1 = bi
n−i(t) for i =

0, ..., r and t = u−u0
u1−u0

.
C1 −Continuity: Control points bn − 1, bn, bn+1 are
colinear.
Matrix form: x(t) =

∑n

i=0 ciCi(t). Basis trans-
form into monomial representation with M = {mij}:C0(t)

...
Cn(t)

 =

m00 · · · m0n

...
. . .

...
mn0 · · · mnn

t0

...
tn


For Bernstein: mij = (−1)j−i

(
n
j

)(
j
i

)
Spline interpolation: Interpolate a set of points
p0, ...,pn using basis functions. For monomials as
basis: pi = x(ti) =

∑n

j=0 aj(ti)j , i ∈ [0,n]. Re-
sulting in Vandermonde matrix (ill-conditioned):1 t0 · · · tn

0
...

...
. . .

...
1 tn · · · tn

n

a0
...

an

 =

p0
...

pn


Blossoming: Generalisation of deCasteljau.

19 B-Spline Curves
not interpolating, C2-continuous, local
How many knots does a knot vector need to have?:
k + n + 2 where k = degrees of freedom and n = poly-
nomial degree
B-Spline: s(u) =

∑k

i=0 diN
n
i (u) with deBoor points

di and knot vector u = [u0, ...,uk+n+1] (k is degree of
freedom and n polynomial degree).
Recurrence: Recurrence relation: Nn

i (u) =
(u−ui)

ui+n−ui
Nn−1

i (u) + (ui+n+1−u)
ui+n+1−ui+1

Nn−1
i+1 (u), where

N0
i (u) =

{
1, u ∈ [ui,ui+1)
0, else

. B-Spline bases of degree

has support over n + 1 intervals of the knot vector.
B-Spline filters: Widely used in signal proces-
sing. Cardinal B-Splines over uniform knot sequences
can be computed using the convolution operator:
Nn

i = Nn−1 ∗N0 =
∫ x

0 Nn−1(t)N0(x− t)dt.N0: box-
function.
Properties: Partition of Unity:

∑
i
Nn

i (u) = 1. Po-
sitivity: Nn

i (u) ≥ 0. Compact support: Nn
i (u) = 0,

∀u /∈ [ui,ui+n+1]. Continuity: Nn
i is (n − 1) ti-

mes continuously differentiable, if p knots overlap
(uj = ... = uj+p−1) only Cn−p, higher continui-
ty leads to smother transitions between different
segments and smooth derivative curves. Variation
diminishing property. Convex hull property.
deBoor Algortihm: We want to evaluate the B spli-
ne curve s(u) at point u = t. For given t ∈ [uI ,uI+1]
all Nn

i (u) vanish except for i∈ {I−n, ..., I}. Point s(t)
computed by successive linear interpolation.
Control point in k-th step:
dk

i = (1−ak
i )dk−1

i−1 +ak
i dk−1

i where ak
i = t−ui

ui+n+1−k−ui
,

d0
i = di, dn

n = s(t).
Special case: If 0 = u0 = ... = un < un+1 = ... = u2n+1
with un+k = 1 for k ∈ [1, ...,n + 1] we get dk

i (u) =
udk−1

i (u) + (1−u)dk−1
i+1 (u) (deCasteljau)

End Conditions: How curve behaves at end points.
For closed loop periodic deBoor points and knot vec-
tor: d0 = dk++,u0 = uk+1

20 Tensor Product Surfaces
2D to 2D mainly used for warping No NURBS
Tensor Product Surface: 2D/3D curve: x(u) =∑m

i=0 ciFi(u) with bases Fi and coefficients ci. For
surfaces turn coefficients into functions of a second
parameter: ci(v) =

∑v

j=0 αi,jGj(v) resulting in the
tensor product surface x(u,v) =

∑m

i=0 ci(v)Fi(u) =∑m

i=0
∑n

j=0 αi,jFi(u)Gj(v)
Bezier Patches: Given bezier curve of degree
m bm(u) =

∑m

i=0 biB
m
i (u) and control points

bi as bezier curves of degree n: bi = bi(v) =∑n

j=0 bi,jBn
j (v) construct point on the surface:

bm,n(u,v) =
∑m

i=0
∑n

j=0 bi,jBm
i (u)Bn

j (v)
Properties: affine invariance, convex hull, variation
diminishing, boundary curves are bezier curves.
2D deCasteljau: Algorithm for computing point on
surface.
Warping: Function from 2D to 2D, distorting an
image
NURBS: Non uniform rational b-splines. ̸=
Tensor Product Surfaces since bases not se-
parable. Top row: different B-splines, bot-
tom row: nurb surface with different weigths

21 Subdivision Surfaces
Corner Cutting: Insert two new vertices at 1

4 and
3
4 of each edge. Remove old and connect new vertices.

Subdivision surfaces: Generalisation of spline cur-
ves/surfaces, arbitrary control meshes, successive
refinement, converges to smooth limit surface, connec-
tion between splines and meshes. In a sense similar to
deCasteljau (corner cutting). No regular structure like
curves (arbitrary number of edge neighbours, different
subdivision rules for each valence).
Classification: Primal: faces are split into sub-
faces. Dual: Vertices are split into multiple ver-
tices. Approximating: Control points not interpo-
lated. Interpolating: Control points interpolated.

Geometric continuity: Weaker form of continuity
focusing on the visual appearance, e.g. Gn curve might
be Cn−1 for a finite set of points and Cn everywhere
else.
Doo-Sabin: generalisation of bi-quadratic B-
Splines, for polygonal meshes, generates G1 continuous
surfaces.
Catmull-Clark: generalisation of bi-cubic
B-Spline, polygonal meshes, G2

Loop Subdivision: generalisation of box
splines, triangle meshes, G2

Butterfly: triangle meshes, G1 continuous
Top row: Start, Doo-Sabin, Catmull-Clark.
Bottom-row: Start, Loop Subdivision, Butterfly

22 Visibility & Shadows
Visibility: Some parts of of some surfaces are occlu-
ded by other surfaces.
Painter’s Algorithm: Render objects/Polygons from
furthest to nearest. Problem: cyclic overlaps and inter-
sections.
Z-Buffering: Store depth to the nearest object for
each pixel. 1.Initially all∞. 2. For each Polygon, if the
z value of a pixel for this polygon is smaller than the
stored z value, replace the stored z value. Problems: li-
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mited resolution (only finite number of z values), non-
linear (higher resolution for near objects, lower for far
objects), setting near plane far from camera exacerba-
tes resolution problem.
Shadows: Important for perception of depth, realism,
indicating light position and type (point light or area
light).

Planar Shadows Draw projection on the ground.
Limitations: No self shadows or on other objects. Pro-
blems with curved surfaces.
Projective texture shadows Separate obstacle and
receiver. Compute b/w image from light and use as
projective texture.
Limitations: Need to specify obstacle & receiver. No
self-shadows.
Shadow Maps

1. Compute depths from light d(xL) and camera.
2. For each pixel in camera plane:

(a) Compute point in world coordinates
(b) Project onto light plane zL

(c) If d(xL) < zL, then x is in shadow.
3. Add bias for stability (d(xL) + b < zL).
4. A point to shadow can be outside the FoV of sha-

dow map, thus use cubical shadow map or spot
lights.

5. Should not filter depth, but take weighted ave-
rage.

Shadow Volumes
1. Explicitly represent the volume of space in sha-

dow. If polygon in volume, it is in shadow.
(a) Shoot a ray from the camera
(b) ++/– counter each time volume is intersec-

ted.
(c) if counter > 0, then primitive is in shadow

2. Use silhouette edges only!
3. Limitations:

(a) Lots of geometry
(b) Expensive to rasterize long skinny triangles
(c) Object must be watertight
(d) Rasterization of polygons sharing an edge

must not overlap and not have gap.

23 Ray Tracing
Rasterization vs Raycasting

Rasterization: Proceed in triangle order, most pro-
cessing based on 2D primitives (3D that was projected.
Store depth buffer).
Raytracing: Proceeds in screen sample order, never
have to store depth buffer (just current ray), natural
order for rendering transparent surfaces. Must store
entire scene.
Shadow mapping: Render scene (depth buffer on-

ly) from location of light. Everything ßeen"(depth test
success) from this PoV is directly lit, if depth test fail
→ shadow.
Shadows ray tracing: shoot ßhadow"rays towards
light source from points where camera rays intersect
scene. If nothing in the way→ lighted, else→ shadow.
Environment mapping: approximate appearance of
reflective surface by placing a ray origin at location of
reflective object, render six views (for a cube). Use ca-
mera ray reflected about surface normal to determine
which texel in cube is "hit".
Reflections: ray tracing: recursive ray tracing, com-
pute a secondary ray from surface in reflection directi-
on.
Ray Casting Shoot ray through from the camera
through the pixels and in first intersection, evaluate
the illumination model.
Forward Raytracing Rays from light source (not ef-
ficient).
Backward Raytracing Shoot rays from the camera.
The Pipeline

1. Ray Generation: Shoot ray from origin.
2. Intersection: Calculate first intersection. Calcu-

late illumination at that point by recursion (eit-
her reflect or refract).

3. Shading: Shoot ray from intersection to directly
to light source. Intersection =⇒ Point in sha-
dow.

Supersampling Shoot multiple rays to remove alia-
sing.
Shading: physically correct too costly, instead assume
surface reflectance (diffuse, specular, ambient, trans-
parent), use shadow rays for shadows. Extensions: mo-
del refraction, multiple light sources, area light for soft
shadows, sample and intersect in time for motion blur,
depth of field.
Acceleration: Cost for ray tracing O(#rays * #ob-
jects).
Uniform grids:

• Preprocess: Bounding box, grid resolution, ras-
terize objects, store references to objects.

• Incrementally rasterize ray and stop at intersec-
tion with rasterized object.
Advantages: fast to build, easy to code.
Disadvantages: not adaptive to scene geometry.

Space partitioning trees: octree, kd-tree, bsp-tree.

24 OpenGL
OpenGL Transformations

Vertex
(x,y,z,1)⊤

Eye
Coords.

Clip
Coords.

Normalized
Device
Coords.

Window
(Screen)
Coords.

ModelView
Transform Proj. Perspective

Division
Viewport
Transform

Model View Transform First model to world coor-

dinates:
[

r1 r2 r3 t
0 0 0 1

]

m
od

el

1

 =

 w
or

ld

1

 Then world to

camera:

[
left up -dir eye
0 0 0 1

][

ca
m

1

]
=

 w
or

ld

1


Projection
Either parallel:

2
r−l

0 0 − r+l
r−l

0 2
t−b

0 − t+b
t−b

0 0 − 2
n−f

− f+n
f−n

0 0 0 1

[
c
1

]
=

[
c′

1

]
Or perspective:

2n
r−l

0 r+l
r−l

0
0 2n

t−b
t+b
t−b

0
0 0 − f+n

f−n
− 2fn

f−n

0 0 −1 0

[
c
1

]
=

[
c′

−cz

]
Perspective Divison 1

−cz
c′ =

[
dx dy dz

]⊤

which are the normalized device coordinates. dx,dy po-
sition and dz depth.
Viewport Transform screen cord. =[ w

2 dx + (ox + w
2 )

h
2 dy + (oy + h

2 )
f−n

2 dz + f+n
2

]
25 Radon Transformation

The Radon transform Rf(θ,s) of a function f(x,y) is
defined as:
Rf(θ,s) =∫ ∞

−∞

∫ ∞
−∞ f(x,y)δ(xcos(θ) + y sin(θ)− s)dxdy

θ is the angle of the projection, s is the distance para-
meter, δ(·) represents the Dirac delta function.
Properties

• Linear
• Shifting only changes the ρ coordinate
• Rotation of the coordinate system also rotates

the Radon transformation
• The Radon transform of a 2D convolution is a

1D convolution of the Radon transformed func-
tion with respect to ρ

Reconstructing Image
Assume: attenuation of material in each px con-
stant and ∝ area of the px illuminated by the
beam. kij = are of pixel j illuminated by ray i

total area of pixel j
for

i ∈ [l], j ∈ [nm]. Thus the model reads: Kf = g with
f BW plane/volumetric image to be retrieved, g at-
tenuation measurement from the CT system. Can be
solved with normal equations. Big system!

Central Slice Theorem G(q,0) = F (q cos0, q sin0).
1D Fourier transformation of the measurement g = Rf
(for fixed θ) is equal to 2D Fourier trans. of f(x,y) at
a particular point.
Filtered backprojection

1. Measure attenuation (projection) data
2. 1D-FT of projection data
3. High-Pass filter in Fourier domain (2π|w|/K)
4. 2D-Inverse FT
5. Sum over all images

Issues without HPF :
• Requires many precise attenuation measure-

ments
• Sensitive to noise
• Unstable & hard to implement accurately
• blurring the final image

25 Math
Trigonometry

sin(x) = eix−e−ix

2i
cos(x) = eix+e−ix

2
sin(2x) = 2sin(x)cos(x)
cos(2x) = cos2(x)− sin2(x)
sin(x + y) = sin(x)cos(y) + cos(x)sin(y)
cos(x + y) = cos(x)cos(y) + sin(x)cos(y)
sin2(x) + cos2(x) = 1

Distance between two points:
(a1,a2)and(b1, b2)→ (a1− b1) + (a2− b2)
Closest point on a 2d line: 2D line: NT x = c plug in
NT (p+ tN) = c and compute p+ tN = p+(c−NT p)N
Closest point line segment: find closest point on
line, then check if between endpoints (a + t(b− a)
check if t ∈ [0,1]) else closest endpoint
Point-line intersection: plug point in line equation.
Line-line intersection: ax = b,cx = d→ a1 a2

c1 c2
x1
x2 = b

d
Intersecting ray with implicit surface: All points
s.t. f(x) = 0 and ray r(t) = o+td =⇒ solve f(r(t)) = 0
for t
Ray-plane intersection: Given plane NT x = c, ray
r(t) = o + td, replace x with ray equation, solve for
t =⇒ point = o + c−NT o

NT d
d

Ray-triangle intersection: Parameterize trian-
gle given by vertices p0,p1,p2 (barycent.coords)
f(u,v) = (1 − u − v)p0 + up1 + p2 solve for u,v, t :
[p1−p0,p2−p0−d][uvt]T = o−p0
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